
B~est
Availlable

COPY

A.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

00=S t

THESIS

EVALUATION OF HARDWARE AND SOFTWARE
FOR A SMALL

AUTONOMOUS UNDERWATER VEHICLE
NAVIGATION SYSTEM (SANS) \-A,'-K

by

Nancy Ann Norton T |

September 1994
~00

Thesis Advisors: Robert McGhee (A
James Clynch %

Approved for public release; distribution is unlimited.

94 11 10 011

REPORT DOCUMENTATION PAGE FOMBN 0704-0188

Public upo~tung burden for thoe collecton of sriornutmon a eatirnited to aver age, 1 hour per response wocluding the han rewgwaron$ searcdung exaltmg data sourcos
@Whemg arnd amonamin" the dat a needed. anid oowipetring anid reuwig fte collection o at marrnabor Send coriwneita regard"i the burden ealnt.o 0, any COWe aspiect Or tIN$

on"ec~ria minof i dorn i.in rinlduing suggestions for reducing th bude to Waatvngtori IedquartenServeae Deectoraeteot Irionmoneci0pereiioe and PAeports ¶ 215 Jetew.

0ev, Hihoway. Suae 1204. Arlington, VA 222024302 aid to"teOfficef cialnogermsutend Budget Paperwork ReduckoniPropect (O7d004-OU Wnhwtiigi DC 2050

1. AGENCY USE ONLY (Leave blank) 1.REPORT DATE 13. REPORT TYPE AND DATIES COVERED
F. Sep~tember 1994 IMaster's Thesis _____________

4. TITLE AND SUBTITLE S. FUNDING NU&BERS

EVALUATION OF HARDWARE AND SOFTWARE FOR
A SMALL AUTONOMOUS UNDERWATER VEHICLE
NAVIGATION SYSTEM (SANS) (U)

S. AUTHORS)

Norton. Nancy Ann

7.pnom ORGAIMUTION1 "All" AMS A00111194 a Pan SS 3--onewouZTUO

Naval Postgraduate School
Monterey. CA 93943-i(XX)

The view% expresed in this them% ame those of the authot and &1 not4 refk-Lt the ofht iai pol,~ ý. i

position of the Department of IDefenre ot the t nited State% (asernrnment

ia& DISTRISUTIMN AMILAMMY STAlWT101M 011WUvs Cm~~

Approved for public release. distritoution I-. unlimited

t ABSTRACT ,&a~.rw 1X

The purpose of this thems is to nailuste the havd19are and softuhare 1(51 A Small Autonmuwmw
Underwater Vehicle IAI7Vi Navigation Siwgm 4SANSt. a self-contamned. csternalls ffimnuNtle
navigation system. The SANS is designed to deternune the location of an undiriuatet 4tkefi uanE .i
combination of Global Positioning System IGPS I while surfaced, and Inertial %a% igation %%~te l'%%i NS
while submerged.

,Various expeunmernal te-Atmng of the hardware ~A&* performed to determine the at'ilit% Mt the (PS
navigation systemn to function within the mission requirmnent' A tes.t ~A& done it, dJeerminir the tinr
required to obtain a GPS fix A test of the svuem %%hike the antenniA& ta oseird tiith AaIer Aj. done ii'

deteirmine if the GPS signal could penetrate a shailcni liv-er of ssater inall%. i wig test Uj Ifcne t.ý
determine the feasilility of reacquirng a GPS fix afite the %v*%tem ha-. been wutwnerp~d Iturini: norinif
ocean *iaw wash A tomputef simulation A&% wrnitten in Commonu I .ISP ot~tipa Sat'rr i(A 0S, tnfr
to esaluate the error% introdued hv using an a.eLerkrometer in the I%% it, dtermine the %.limb .mngi -f the
AL'V while %urfacing

The expenmrentil testinf of the (;PS Sb stemn %hi~t.rd thut the (I'S .ignai i.. it* it, penrutiei a %il%
liver of %%ater cosecring the antenna. and that the %%s %tem is. at* I c-fri Owtth at, uri %A..s isnc tf re e4uletirmtf¶
o(the mission ashile being splashed t,% ~Aj-t .aash The %irulation tc..ults shtss that the viin t ntyrvtuipf

bymeasurinc Llimb angle % ith an usieleromriete iis nuntr AMd %ill N-4 ..Irnmti.anths (kgfriar Ith U Wa

ol' the system

Autofnxmoutf I nder awte Veheele i At Vi. (ilottal h-naitawiung twrtfn'
iGPSI. menia Nasigation Systm iNS% %uwtwrievrd a- aigation W roo
SANS. Sumilasn. (tOS

-p wpo F" 111 amp

I ns lassihed I nt&%mlasmi [it I asa
0,5 "e~ i 0 &"Y 3 wutilw >SPr o

ii

Approved for public release; distribution is unlimited

EVALUATION OF HARDWARE AND SOFTWARE FOR A
SMALL AUTONOMOUS UNDERWATER VEHICLE

NAVIGATION SYSTEM (SANS)

Nancy A. Norton
Lieutenant, United States Navy

B.S., Portland State University, 1986

Submitted in partial fulfillment of the

requirmments for the degree of -

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1994

Author: 11/6z4w(Natncy~-tnI Nancy A. Norton

Approved By: (ýka)P(ýM~(
Robert McGhee, Thesis Advisor

James Clynch, ThesiVAdvisor

Ted Lewis, Chairman,
Department of Computer Science

w

iv

ABSTRACT

The purpose of this thesis is to evaluate the hardware and software for a Small

Autonomous Underwater Vehicle (AUV) Navigation System (SANS), a self-contained,

externally mountable navigation system. The SANS is designed to determine the location

of an underwater object using a combination of Global Positioning System (GPS) while

surfaced, and Inertial Navigation System (INS) while submerged.

Various experimental testing of the hardware was performed to determine the ability

of the GPS navigation system to function within the mission requirements. A test was done

to determine the time required to obtain a GPS fix. A test of the system while the antenna

was covered with water, was done to determine if the GPS signal could penetrate a shallow

layer of water. Finally, a sea test was done to determine the feasibility of reacquiring a GPS

fix after the system has been submerged during normal ocean wave wash. A computer

simulation was written in Common LISP Object System (CLOS) in order to evaluate the

errors introduced by using an accelerometer in the INS to determine the climb angle of the

AUV while surfacing.

The experimental testing of the GPS system showed that the GPS signal is able to

penetrate a shallow layer of water covering the antenna, and that the system is able to meet

the accuracy and time requirements of the mission while being splashed by wave wash. The

simulation results show that the error introduced by measuring climb angle with an

accelerometer is minor and will not significantly degrade the accuracy of the system.

vi

TABLE OF CONTENTS

1. IN TR O D U CTIO N .. 1

A. BACKGROUND .. I

B. THE RESEARCH QUESTIONS ... 1

C. SCOPE, LIMITATIONS AND ASSUMPTIONS .. 2

D. ORGANIZATION OF THESIS .. 2

II. SURVEY OF PREVIOUS WORK ... 5

A. INTRODUCTION .. 5

B. GPS NAVIGATION .. 5

C. AUV SUBMERGED NAVIGATION .. 8

D. ROBOT KINEMATICS AND DYNAMICS SIMULATION 12

E. SUMMARY ... 12

III. DETAILED PROBLEM STATEMENT ... 15

A. INTRODUCTION .. 15

B. GPS NAVIGATION .. 16

C. SUBMERGED NAVIGATION .. 18

D. NAVIGATION SIMULATION ... 20

E. SUMMARY ... 21

IV. SYSTEM DESIGN ... 23

A. INTRODUCTION .. 23

B. HARDWARE DESCRIPTION .. 24

C. SOFTWARE DESCRIPTION .. 33

D . SU M M A R Y ... 35

V. DEMONSTRATION SYSTEM TESTING ... 37

A . IN TR O D U CT IO N .. 37

B. STATIC TEST RESULTS ... 37

C. GPS BENCH TEST RESULTS ... 39

vii

D. SEA TEST RESULTS .. 43

E. SIMULATION RESULTS .. 50

F. SU M M A R Y .. 54

VI. LISP SIMULATION CODE DESCRIPTION ... 57

A. INTRODUCTION .. 57

B. CLASS AND OBJECT HIERARCHY ... 57

C. HUNTER CLASS DEFINITION CODE .. 58

D. HUNTER OBJECT INSTANTIATION CODE ... 61

E. SIMULATION CODE .. 63

F. GRAPHICS DISPLAY .. 65

G . SU M M ARY .. 67

VII. CONCLUSIONS AND RECOMMENDATIONS ... 69

A. CONCLUSIONS ... 69

B. RECOMMENDATIONS ... 70

APPENDIX A: TECHNICAL SPECIFICATIONS .. 71

APPENDIX B: SIMULATION CODE .. 77

APPENDIX C: PLOTS OF STATIC-TEST DATA .. 117

APPENDIX D: GLOSSARY OF TERMS ... 129

LIST OF REFERENCES .. 135

INITIAL DISTRIBUTION LIST ... 141

vilo.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Robert McGhee and Dr. James Clynch who served

as co-advisors for this thesis. Dr. McGhee's knowledge, guidance and enthusiasm for this

project where instrumental in the success of this research. His assistance and instruction

were vital to my understanding of all aspects of this research. Dr. Clynch provided a

tremendous amount of technical information and knowledge outside of my field, as well as

guidance in proper research procedures. His extensive time and effort spent with the author

definitely improved the overall quality of this thesis. Both advisors made the entire project

a very worthwhile and enjoyable learning experience.

My appreciation goes to Dr. Se-Hung Kwak for initially generating my interest in

this research, and guiding me into a focus area for this thesis. He was always encouraging,

and his wide range of knowledge and expertise were always available.

A great deal of gratitude goes to Mr. Russ Whalen, who provided the technical

support and knowledge for this research. Without the time and labor he provided, this

research would not have been possible.

The basis for this research was provided by LCDR Clark Stevens and LT James

McKeon. Their effort and the knowledge they presented previously were essential to this

work, and is greatly appreciated.

Finally, the author would like to thank her husband, LT Bruce Hamilton, for the

selfless support and encouragement that he continually provides. His patience,

understanding, and support make all of my work easier and more worthwhile.

ix

I. INTRODUCTION

A. BACKGROUND

The mission of Autonomous Underwater Vehicles (AUVs) varies greatly. One of

the most important and most difficult areas of AUV research is navigation. There are many

types and combinations of navigation that can be used by AUVs. The type of navigation

system that is desired depends largely on its mission. The Global Positioning System (GPS)

provides a highly accurate means of navigating while on the surface. Various types of

Inertial Navigation Systems (INSs) can be used for underwater navigation.

The, Small AUV Navigation System (SANS) is designed for use on a variety of

AUVs. These could include mechanical AUVs of varying sizes, humans, or marine

mammals. The mission of the AUV equipped with a SANS is underwater mapping. This

mission is broken down into two phases. After being launched from shore or from a boat,

the first phase of the mission is the transit phase. This would include navigating the AUV

from the launch site to the desired mission area, and navigating back to a designated

recovery site. The second phase of the mission is the mapping phase. This involves

searching a designated area for objects of interest and determining their locations.

In order to provide accurate navigation and mapping, a combination of GPS and

INS navigation is used in the development of the SANS. The feasibility of this combination

was evaluated favorably in [MCKE92]. The hardware and software architecture required

to perform the mapping phase of the mission were defined and evaluated in [STEV93].

B. THE RESEARCH QUESTIONS

The research questions of this thesis are:

• How will the ocean surface and salt-water affect the ability of a GPS antenna and

receiver to continue tracking satellites used by the SANS to determine location?

° What current technology and equipment are proposed for use in the production

of a prototype SANS?

• Will the current SANS design and hardware meet all of the performance

objectives for this mission?

C. SCOPE, LIMITATIONS AND ASSUMPTIONS

This thesis reports the findings of the third year of research in an ongoing research

project. The scope of this investigation is to determine how the ocean water will effect the

ability of the SANS to use GPS navigation with an antenna on the surface of the water, and

to develop a computer simulation written in LISP, that will determine the error introduced

by using an accelerometer in the SANS as part of the Inertial Navigation System (INS). The

objectives for this project are described by McGhee et al. [MCGH92] as:

* Low Power Consumption. Operation from an external battery pack for 24 hours

is desirable.

• Limited exposure time. GPS antenna exposure time in the mapping phase should

be minimized. Up to 30 seconds exposure allowed, but intervals between such exposures

should be as long as possible, exceeding several minutes at a minimum.

* Maintain covert operation. The GPS antenna should present a very small cross

section when exposed and should not extend more than a few inches above the surface.

• Maximize accuracy. For the mapping phase of the mission, system positioning

accuracy of 10 meters rms or better is required with post-processing, both submerged and

surfaced.

* Minimize size. Total volume is not to exceed 120 cubic inches. An elongated,

streamlined package is preferred.

1). ORGANIZATION OF THESIS

This thesis provides an evaluation of the hardware and software used in a low cost

version of SANS called the interim SANS.[STEV93] No changes have been made to the

software system in this research, however the software system is described. Changes have

been made to the hardware system which have been evaluated, as well as additional testing

2

of the system that demonstrate its ability to operate in the ocean, based on the mission

requirements. This thesis is organized into seven chapters.

Chapter II reviews the previous work on this project as well as previous and current

work on GPS navigation, AUV submerged navigation, and robot kinematics and dynamics

simulation.

Chapter III is a detailed problem statement. This includes the mission requirements,

and the problems related to GPS navigation, submerged navigation, and the LISP

navigation simulation.

In Chapter IV is a detailed description of the hardware and software currently in use

for this project. It explains the hardware components currently used in the SANS and

includes a description of their capabilities. Photographs of each piece of hardware are

included. Chapter IV also describes the software designed and detailed in Stevens

[STEV93].

Chapter V is a description and presentation of the results of the demonstration

system testing performed, and an assessment of the system's ability to achieve the mission

requirements.

Chapter VI is a description of the LISP simulation code used to determine expected

error rates of the measurement of horizontal distance travelled. This includes an

explanation of the class and object hierarchy used, and a sample display from a simulated

AUV surfacing.

Chapter VII presents the conclusions of the software and nardware testing and

provides recommendations for future research.

4

II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

Autonomous Underwater Vehicles (A1'Vs) have a potential for use in many

different applications. One very important aspect of AUV control is navigation Many

potential applications require highly accurate navigation. This chapter will discuss some of

the various possible solutions for navigating an AUV, and how robot kinematiL' and

dynamics can be used for computer simulation of the actions of the AUV and therefore the

requirements for navigation systems. The types of navigation can be split into two

categories, external signal based navigation and sensor based navigation.

External signal based navigation provides positioning information only when the

signal receiver is exposed to the signals, above the ocean surface, such as Loran, Omega

and the Global Positioning System (GPS). Loran and Omega both are relatively inaccurate,

and Loran provides limited coverage. Because GPS provides continuous worldwide

coverage and is highly accurate, it will be the focus of this survey.

Sensor based navigation constitutes a self-contained system which can be made up

of a wide variety of equipment that can be used to determine the submerged location of an

object. These can be grouped into four types: dead reckoning, inertial navigation systems

(INS), acoustic navigation, and geophysical mapping comparison. Sensors are subject to

drift. On long AUV missions they are not able to provide the accuracy required for many

applications. High quality INS are expensive as are acoustic beacons. Acoustic beacons

must be predeployed at precisely known locations, and geophysical map interrogation

requires a good bottom elevation map previously stored on the AUV's computer.

[TUOH931

B. GPS NAVIGATION

The Navigation Satellite Timing and Ranging Global Positioning System or

NAVSTAR GPS is a United States Department of Defense project that was started in the

1970's to attempt to provide the military with precise navigation capability and accurate

5

timing IPARMOK I and 11(JY1" It %i~ ~t~aet tmdol fk o itia'oirtg naj iqjiwti irk

tirie-tran~fer %v%tem 'The full% opetitional GPS -.% %trivi no% pin. Ork% 24 thour izll 'Arithel

nlJ, igation . apahsilt%. bh pfor Kling totAl eCAfh %o•0erAF uing 24 atelhite, owbltinj thr r-irth

in nirtula& 21i.211 km orbits at j 55'' irnkinauto -Aith 2-how prn(xl% Th% viAItr oil t%4I

L-band frequencies. L I 1575.4 MHz i and L2 1 22- 6 %tlizt Su.erimpoiied on the'," t%.,

carrier frequeticies i, navigation and -vy-ovm data. predtced %atellite ephe-nefi. of p ,•Itilol

information. atmro'pheric propagation correction data. %atelhite ck hk error infowrmnaon. and

satellite health data. I VANDKI¢) and JWW(D$•5

There are two unique and distinct navigation %er' ice% a ailahle from the GPS

satellites. the Standard Positioning Service iSPS) and the Preise Positioning Service

(PPS). In order to degrade the accuracy of SPS. an intentional inaccuracy is introduced into

the satellite broadcast signal through a process called Selective Availability or SA.

!KREM91)I This limits SPS to worldwide coverage with I00 m horizontal accuracy with a

95% confidence level. PPS access is controlled by the use of cryptographic devices which

remains restricted to US and allied military and highly selective, specific US non-military

uses that are in the national interest. PPS provides the highest stand alone accuracy, 15 m

SEP (Spherical Error Probable), a velocity accuracy of 0. 1 rn/sec, and a timing accuracy of

better than 100 nanoseconds.[VAND80 and [WOOD851

To take full advantage of the high accuracy potential of GPS, without the

cryptographic equipment required for access to the P-code, the civilian community has had

to determine a way of filtering the errors and improving the accuracy of the SPS. The

solution was differential GPS or DGPS. DGPS uses one or more stationary antennas and

one moving antenna to yield position with a much higher accuracy. This simply entails

placing a receiver at a known location, determining the position, or pseudo range, errors

and broadcasting the corrections to nearby users. [KREM9() Real-time differential

processing and differential post-processing can improve GPS accuracy to 2-4 m with SA

on or off, without the need for PPS [CLYN92] and [COCO90].

Over the last several years, GPS has been adapted for use in virtually every type of

transportation in the military and the civilian world. The cost and the size of GPS antennas

6

and r-e vier have decreased significandy. making practical new uses that had only been

Somvplts in the past GPS is now used heavily on aircraft and nearly every size and type of

%hip It is noA even being used in automobiles and hand-held units are used by backpackers.

[KRALY31

Given the level of accuracý provided by GPS and the great decreases in size and

cost of receiver%. GPS is an obvious choice for use in AUV navigation. Many researchers

have begun to include the capabilities of GPS into their applications. In [YOUN9I].

Youngberg suggests that free-roving buoys be used to translate GPS radio-based signals to

an underwater acoustic-based signal. These sonobuoys (123 mm diameter x 910 mm long,

5-15 kg) would contain a GPS antenna, GPS receiver, processing and control subsystem,

acoustic transmitter, battery power, and homing beacon. The AUV could then determine its

position based on the ranging and position fixing of the buoys. A simulation of this type of

system was done with a 1 km distance between buoys and a couple of hundred meters

distance to the AUV. It is proposed that an accelerometer, a Kalman filter, and DGPS be

used to overcome the errors caused by the ocean waves and variations in altitude. Each GPS

buoy would broadcast its position data via spread spectrum signals used by the AUV for

ranging. This would save much of the time and effort that must be spent to position and

calibrate transducers. [LEU93]

Another buoy system, the NAVSYS TIDGET, was developed as a low-cost,

disposable GPS for military sonobuoys that are air-launched and float on the surface. The

design requirements were:

" Cost < $150

"* 10 m accuracy

"• Sized to fit within existing sonobuoys

"• Antenna to fit in the sonobuoy float bag

"* Time To First Fix nearly instantaneous

"* No modification to the airborne acoustics processor

"* Operates in all sea states

"• Maximum update rate of 10 seconds

7

"• No pre-launch initialization requirement

"• Power < I W continuous

The TIDGET was able to meet all of the design requirements. I BROW931

Another area of continuous improvement is miniaturization. GPS receivers have

been able to maintain or even improve in performance while getting much smaller. For

example, the Furuno GPS Receiver Module LGN-72 is an eight-channel receiver which is

a single printed circuit board that requires only 2 W of power and is 1() mm x 70 mm x 20

mm. ISOUE921

C. AUV SUBMERGED NAVIGATION

Dead reckoning in some form has been used for navigating longer than any of the

other methods. Position is calculated by integrating the velocity of the vehicle in time.

Velocity can be determined simply by using a compass for heading measurement and

tracking speed. Modern dead reckoning systems typically use magnetic or gyroscopic

heading sensors and a bottom or water locked velocity sensor. IGROS921 Errors are

introduced by the unknown movement of the vehicle caused by ocean currents and waves.

There are many ways to calculate position while submerged. Velocity

measurements are available from Doppler sonar, or from correlation velocity log (another

type of sonar). Position can be measured directly by laser scanning, CCD cameras, side

scan sonar, and magnetic field measurements. Position can also be inferred by double

integration of acceleration as in Inertial Navigation Systems (INS). CCD cameras operating

close to the bottom may be used to recognize features and compare them to a reference

map. Side scan sonar measures variations in the ocean bottom backscatter. IBERG931 INS

determine position by a combination of precision orientation or angular rate sensors and

accelerometers. There are many different varieties of angular sensors and accelerometers.

These include using fiber optic gyros, ring laser gyros, vibratory rate sensors, high

performance Inertial Measurement Units (IMUs) with three inertial grade angular rate

sensors and three precision linear accelerometers, and three-axis magnetometers with two-

8

axis inclinometers. All of these sensors are subject to drift errors however, and the error

increases with time. Also, high quality sensors are very expensive.

Acoustic navigation uses the time of arrival and direction of the acoustic signal

relative to an array of transponders to determine position. There are long, short, and

ultrashort baseline systems (LBL, SBL and USBL). [TUOH931 For LBL, the acoustic

beacons must be predeployed at a position that is known to an accuracy greater than that

desired for the AUV. Long baseline navigation has been tested [BELL921 in which the

AUV passively listens to the synchronized emissions of the array, where the transponder

locations are known. The transponders are separated by 10M m to 10 km, depending on the

frequency of operation used by the system. The vehicle uses the differential time of arrival

of the acoustic pulses to determine its position. The advantages of the LBL system are that

it can be used by multiple vehicles at one time, the hardware is fairly simple and small, and

it requires minimal power usage by the AUV.

This system is being researched for use in Arctic under-ice surveying with transits

of up to 10 km and mapping operations over an area of 1 km2. [BELL93-21 Another

application which uses three forms of navigation is the Odyssey AUV [BELL93-]1 using

dead reckoning. LBL to determine the position relative to the transponder array, and ultra

short baseline which is used to track the AUV from the surface. A similar proposal is

analyzed in [ROER931 where it is proposed to use an AUV to collect data under oil spills,

at a depth of 1-3 m. A boom floating on the surface is used to surround the oil spill and the

AUV would have to maintain a position relative to this boom. The proposal is to place three

acoustic transponders on the boom, and the AUV would navigate relative to the

transponders. Error would be introduced due to the movement of the boom and acoustic

multipath and water column thermoclines.

Geophysical m3pping comparisons may be achieved using various techniques.

They take measurements of simple geophysical properties with vehicle mounted sensors

and match those properties to computer models on board the vehicle. [TUOH93J These

geophysical properties may be magnetic field intensity, bottom topography or a known

image of a structure. The sensors used are either sonar or acoustic transponders. Some

examples of sonar mapping include the use of multibeam sonar for a sea floor profile.

which measures the depths at different angles to get an accurate profile of the sea floor

[BERG931, use of high frequency sonars which yield resolution which can detect objects

in the 50 to 100 m range [CRIS931, and EDOs new doppler precision velocity sensor which

uses the latest digital signal-processing techniques and includes a completely new planar

transducer array. [JORG941

The Brimingham Acoustic Signalling System (BASS) testing was described in

[COAT931. This used a differential phase shift keyed, line-ot-sight, data link which

successfully transmitted over distances to 250 m. They used a 1/50 scale model of an

underwater oil rig, and placed the model transducer within the model rig. The resulting data

was then used to run a database search of the possible positions in and around the structure.

They found that it is possible to determine the position of the model transducer to an

accuracy equal to the quantization cell size of the map stored in the database. This does not

provide direction of motion however. A two-tier position estimation procedure is proposed

which would use both macro- and micro-navigation. [TUOH93] The macro-navigation is

a coarse-scale position estimation via a logic-based interval filter and multiple hypothesis

tracking. The micro-navigation is a fine-scale, quantitative position determination through

interrogation of low-level physical property models which represent a continuum of

possible locations. This approach is similar to the terrain contour matching guidance

system of cruise missiles. [CZES931 and [HINR76] The drawback to any type of

geophysical mapping comparison is that a good map must already be available and be

stored in the computer database.

A combination of various systems has the potential to greatly reduce the

disadvantages of any one system alone. Velocity aided navigational systems offer greater

precision and less cost, and reduce the complexity and stability requirements of an INS. A

precision velocity sensor can be used to provide drift compensation to an INS. The

correlation sonar illuminates the ocean bottom to get a characteristic sonar signature. Then,

the correlation velocity log (CVL) [GROS92] provides a method for determining absolute

velocity relative to the ocean floor at a stand off distance much greater than other velocity

10

measuring techniques. A miniature AUV has been successfully used under Artic ice, with

a dead reckoning system, comprised of a fluxgate compass, pressure transducer, pitch/roll

sensor, yaw-rate gyro, and an acoustic homing system. [LIGH93I and JOSSE931 Theseus

uses a combination of dead-reckoning using a medium accuracy INS, a doppler sonar, and

an acoustic positioning system. [BUTL931

McKeon proposed a combination of GPS and INS to allow an AUV to determine

position information while submerged, and to surface in order to re-initialize the sensors

with the high accuracy of the GPS. [MCKE92] This concept has received much attention.

Early computer simulations using GPS to correct INS errors showed GPS estimated errors

of 43 m. [NAGE92] An extended Kalman filter has been adapted for an AUV to optimize

INS navigation. [MILL9g] Several combination GPS/INS systems have been proposed and

developed. Litton is now producing two completely solid-state INUs which use navigation

quality fiber optic gyros (FOG) and micromachined silicon accelerometer (SiAc)

technology [COX94]. Another is the Honeywell H-764G Integrated Embedded GPS/INS,

which uses a ring laser gyro (RLG) based strapdown INS. This system has demonstrated

pure inertial performance of less than 0.8 nmi/hr and GPS aided performance of less than

16 meters SEP. The combined system provides outstanding performance with fewer than

four satellites in view, is reduced in size, weight and power requirement, and is simple to

install. [MOYA93]

Two submersibles that are designed to surface to transmit data and establish a GPS

position to update onboard guidance systems are DOLPHIN and DOGGIE. [HADD93]

DOLPHIN (Deep Ocean Long Path Hydrographic Instrument) will navigate across the

oceans conducting a continuous series of hydrographic measurements. It is intended to

undulate between the surface and the ocean floor, surfacing at intervals of about 30 km to

receive GPS position updates. The DOGGIE (Deep Ocean Geological and Geophysical

Instrumented Explorer) is designed to investigate at a much finer resolution, features that

have been identified initially with a sonar survey. It would have a 3-5 day mission of about

500 m above the sea floor and an area of 50 kmn x 50 km. The DOGGIE would also surface

periodically and update the drift error in its dead reckoning sensors. The designers of these

11

two systems found that -... it is possible to reconstruct the GPS data message despite

periodic signal outages...". An analysis of various types of INS systems can be found in

IMCGH921 Various combinations of GPS/INS systems are available that can either be

designed by the user or bought off-the-shelf. These combinations are able to provide very

accurate, high rate, position and velocity information which doesn't degrade over time

(BROW92-11.

D. ROBOT KINEMATICS AND DYNAMICS SIMULATION

Robot kinematics is a systematic approach of using vector/matrix algebra to

represent the spatial geometry of an object with respect to a fixed frame of reference and

as a function of time. Robot dynamics uses the mathematical equations and physical laws

describing motion such as Newton-Euler equations to represent motion from applied forces

and moments. 1FU871 Computer simulation of robot motion is a very useful tool.

Simulation can be used to determine desired motions, to analyze motions, and to determine

the results of motions. The motion of rigid bodies, as described in physics and engineering,

can be used to simulate movement to a desired location. [DAV1931 Forward kinematics and

dynamics compute the Cartesian space position and orientation of a rigid body from the

parameters that describe the body. [FU871 Davidson provides a thorough explanation of the

kinematics and graphical computer simulation code for the Aquarobot, an underwater

walking machine, written in Common Lisp Object System (CLOS) and C++. The object-

oriented programming approach used in this work allows for the design of a complex

system made of many components that may be governed by different physical laws.

[DAV1931 This allows the programmer to easily make adjustments and modifications to

individual components of the system in order to determine the effects of changes to the

system being modeled.

E. SUMMARY

As shown in this survey, there are a multitude of possibilities that can be used for

navigating an AUV. The choices range from simple dead reckoning to complex systems

12

that combine GPS and INS or GPS and acoustic navigation. The type of navigation system

desired for a particular mission must be determined after analyzing the expected use of the

AUV. A navigation system designed for one AUV may be extremely successful, but it may

not adapt well to an AUV of a different size or with a different mission and with different

requirements for accuracy. Because the range of possible systems is so broad, a computer

simulation of an AUV with known mission parameters is a useful technique for

determining an optimum navigation system design.

13

14

III. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

As stated in Chapter II, there are many possible systems that could be used for AUV

navigation. The role and mission of the AUV will greatly influence any navigation system

design. The research of this thesis was done in support of an AUV with a primary mission

of covertly mapping the location of objects of interest underwater. The AUV will be

launched either from shore or from a boat, and will search a particular area for specific

objects. Because the mission is covert, the search area may be a considerable distance from

the launch area. Therefore the mission is broken up into two phases. The first phase is the

transit phase, which will begin at the launch site and continue to the mapping location, and

possibly between multiple mapping locations, then back to a recovery location. The AUV

may be surfaced or intermittently submerged during the transit phase. The second phase is

the mapping phase. The mapping phase of the mission will consist of repeated dives by the

AUV to locate the object or objects of interest. An experimental AUV designed for this

type of mission is described in [HEAL92].

The Small Autonomous Underwater Vehicle Navigation System (SANS) was

proposed as a way to determine the precise location of any objects found by the AUV

[MCGH92]. A GPS/INS combination was proposed for the SANS [MCKE92] in order to

attempt to meet the research objectives described in [MCGH92]. The SANS was designed

as an externally mounted, self-contained navigation system which could be used on a

variety of AUVs for mapping the locations of objects found underwater. The specification

for SANS requires that total volume not exceed 120 cubic inches and the package be in an

elongated shape. The system must provide positioning accuracy of 10 meters rms or better

with post-processing, while submerged and surfaced. In order to avoid detection, the GPS

antenna must not extend more than a few inches out of the water, and must have a small

cross section. Also, the antenna exposure time during each surfacing should be minimized

to 30 seconds or less, with intervals between exposures of at least several minutes. Finally,

the system must be able to operate from an external battery pack for up to 24 hours.

15

An interim SANS was designed and tested on land by Stevens [STEV931. This is

an interim design because it lacks the ability to locate multiple objects before surfacing to

update the SANS sensors. The proposed solution with the current hardware is to require the

AUV to surface after each object is located, obtain a GPS fix for updates, then continue the

mapping phase. This is referred to as a "pop-up" maneuver. With improved system

components, the need for this pop-up maneuver should be eliminated during the mapping

phase. A proposed final SANS design called the baseline system [MCGH92], would

contain those improved components.

Stevens found that by using differential post-processing, a GPS/INS combination

using miniature gyroscopes and other commercially available equipment can provide the

accuracy as well as the minimum exposure time required by the mission within the cost

constraints of the project. However, this system was subject to a limitation on maximum

climb or dive angle to prevent gyro tumbling. [STEV93] As a continuing evaluation of that

interim system, this thesis is focused on experimental testing to determine its ability to

operate and meet system objectives on and under water, and a computer simulation to

determine the accuracy of a system that replaces the gyroscopes with accelerometers, to

both reduce cost and eliminate restrictions on climb or dive angle.

B. GPS NAVIGATION

GPS navigation is able to provide highly accurate, worldwide positioning data very

quickly. As described in the preceding chapter, the two positioning services available are

the Standard Positioning Service (SPS) which is available to everyone, and the Precise

Positioning Service (PPS) which is encrypted for restriction to US and allied military.

Using SPS, the accuracy of the positioning information is limited to approximately 100

meters horizontal accuracy [VAND80]. PPS could be used for navigation systems on

military applications such as this project. However, as shown in Table 1, using differential

16

GPS eliminates any need or desire to incur the potential risk involved in having

cryptographic keys in the navigation system of an AUV.

NON-DIFFERENTIAL 16 100

DIFFERENTIAL 24 1 2-4

Table 1. GPS Positioning Accuracy (in meters) after [STEV931

GPS navigation and a magnetic compass will provide the primary source of

navigation data while in the transit phase of the AUV mission. The AUV must be able to

submerge for short intervals and still maintain accurate navigation after resurfacing. The

underwater mapping phase of the mission will require both surfaced and submerged

navigation. The INS sensors used in the SANS are constrained by size and weight. The

interim SANS has an additional cost constraint. Therefore the quality of the sensors used

will require frequent updates in order to maintain adequate accuracy. The AUV will be

required to surface in the area of the object found (perform a pop-up maneuver) to obtain a

GPS fix, which will be used to record the current position and, with post-processing,

extrapolate this position backwards to the submerged object.

The GPS receiver chosen for use in this research is a Motorola PVT-6 which can

simultaneously track up to six GPS satellites. It is capable of providing position accuracy

of better than 25 meters, SEP without Selective Availability (SA) on, 100 meters with SA

on, 0.1 meter/second velocity accuracy, and a Time-To-First-Fix (T=FF) of about a minute,

with reacquisition time in less than 4 seconds when the antenna has been obscured for 60

seconds. [MOTO93-2] There are different power-up states for GPS receivers, and the

TTFF varies depending on the power-up state. This is discussed further in the description

of the Motorola PVT-6 in Chapter IV, and the complete specifications are listed in

Appendix A. This receiver is capable of providing positioning data within the accuracy and

time requirements of this project, under normal operating conditions ISTEV93]. A new

series of tests was performed to determine the GPS capabilities of the receiver when

interacting with sea water. The results obtained are also presented in Chapter IV.

17

In order to avoid detection, the antenna for the navigation system must be as

unobtrusive as possible, from the air, water and land. This means that it cannot be very

large, or protrude out of the water more than a few inches. Typical ocean uses of GPS, such

as the buoys described in [BROW93] and [LEU93] are designed to place the antenna well

out of the water. With an antenna that is located on or just above the surface of the ocean,

wave-wash will obscure the antenna. The frequency and the length of time that the wave

wash would cover the antenna, as well as the depth of the water, will effect the ability of

the receiver to obtain a GPS position fix. Chapter IV explains the tests that were run to

determine the extent of the degradation in the ability to use GPS navigation under these

circumstances.

C. SUBMERGED NAVIGATION

As previously stated, the mission of the AUV under study [HEAL94] and the SANS

is to provide precise position information relating to a submerged object. In the interim

system, when an object is found during the mapping phase, the AUV must surface. In order

to determine the distance and direction from the submerged object to the surface, where a

GPS position fix can be obtained, the depth change, heading or direction of travel, and the

climb angle must be known. With this information the submerged location can be

extrapolated from the surfaced location. Figure 1 shows an arbitrary path of a surfacing

AUV. The average climb angle is represented by 0, Z is the depth change and H is the

horizontal distance traveled. The horizontal distance is calculated using Equation 1. In

z

H

Figure 1. Computation of Horizontal Distance Travelled from [KWAK93]

18

order to improve the accuracy of the computation, these measurements are recorded at

small intervals which SANS sums to obtain the final resulting distance.

AZ
AH= Eq 1

tanO

These measurements are obtained from various sensors contained in the SANS. The

depth change is measured by a depth transducer and the heading is measured by a flux-gate

compass. Two approaches to measuring the climb angle of the AUV were described in

[STEV93]. The first approach used a miniature gyroscope. The orientation of the AUV

when a submerged object is located was assumed to be near level. Since the gyro measures

only relative position, the climb angle would be determined relative to that near level

position. The climb angle is computed based on the change in orientation of the AUV. The

second approach is to determine the climb angle using an accelerometer (inclinometer).

This approach and the inherent errors in its use are described in [MCGH93I. Specifically,

an accelerometer measures the total acceleration of an object. The output of a

longitudinally oriented accelerometer is shown in Equation 2, where a is the longitudinal

acceleration of the AUV, g is gravitational acceleration, and 0 is the climb angle.

sensed - acceleration = a + g sin (0) Eq 2

When the AUV begins to surface, it will have to accelerate. However, if the AUV has

constant velocity, then the longitudinal acceleration is zero, a = 0, and the equation is

simply

gravity -component = gsin (0) Eq 3

so

sin (0) = gravity - component/g Eq 4

The equation normally used for determining the pitch attitude of a static object with an

inclinometer is Equation 4. But because the accelerometer is on a moving platform, this

must be modified to Equation 5.

sin (apparent - 0) = sensed- accelerationig Eq 5

19

From Equation 2 and Equation 5, we get Equation 6, where aig represents the error between

the sin of the actual climb angle and the sin of the apparent climb angle sensed by the

accelerometer. That is,

sin (apparent- 0) = sin (0) + a/g Eq 6

So,

aig = sin (apparent- 0) -sin (0) Eq 7

From Equation I and Equation 7, the horizontal error introduced by the error in the climb

angle is calculated as:
horizontal-error= AZ(1 l Eq8

tan (6)tan (apparent-O))

Therefore, the apparent climb angle of the AUV can be calculated based on

information from the accelerometer, and with the depth change from the depth transducer,

the horizontal distance can be computed, again using Equation 1. Further explanation of the

calculations required are presented in Chapter V, Section E. The error in this calculation

comes from the effects of longitudinal acceleration. Also, in this system configuration, the

accelerometer would be mounted along the body axis of the AUV. If the velocity vector of

the AUV deviates from the longitudinal body axis, this would add an additional error. By

performing bounding calculations, McGhee concluded in [MCGH93], that the error

generated by an accelerometer used for determining climb angle is acceptable, in part

because of the motion limits of the AUV. Additionally, as the AUV reaches the surface, it

will decelerate. This deceleration will tend to cancel out the errors created from the

acceleration. These effects will be treated quantitatively for typical surfacing maneuvers

in Chapter V.

D. NAVIGATION SIMULATION

A computer simulation of an AUV with the SANS has been created in order to

simplify the process of determining the errors created by the sensors. This simulation is

written in CLOS (Common LISP Object System), an object-oriented programming

language. This allows the AUV and the SANS to be represented as objects and classes that

20

are put together to create an entire system. The simulation is designed as an AUV which

has the physical properties of a rigid body and a separate SANS which is also a rigid body.

The SANS has a link to the AUV to allow them to move as one unit. This unit can move as

required to simulate the actual mission. Using forward kinematics and dynamics based on

Newton-Euler equations [FU87], the final Cartesian coordinates of the system can be

determined.

CLOS also permits each class to have local and shared slots with accessible slot

values [KOSC90]. Within the SANS simulation, each sensor has a slot containing the

measurements that would be obtained by that sensor in the actual navigation system. This

simulation allows for making various changes to the parameters of the AUV mission, or

sampling a number of missions. By running a new simulation, an estimate of the resulting

error can quickly and easily be determined. For example, the simulation can be run using

any climb angle or any depth desired to determine how these changes effect the total error.

The equations for determining the errors in the simulation are the same ones explained

above and in Chapter V, Section E. A graphical representation of the AUV and SANS was

included in the simulation as a way of visually demonstrating the approximate error of the

system. This simulation could be tailored to different types of AUVs, using different types

of sensors as well. The simulation program is explained in detail in Chapter VI.

E. SUMMARY

Navigation system design for an AUV is greatly influenced by its mission.

Therefore the mission requirements have been explained. GPS navigation has some unique

problems to overcome in order to allow the AUV to remain undetected when surfaced. This

research continues the evaluation of the interim system described in [STEV93],

determining how the SANS will perform when used in the ocean. This study includes

analysis of data collected from experimental testing in the lab tc determine the performance

of the GPS antenna and receiver with limited exposure time. It also includes experimental

testing in the lab and on the ocean to determine the effect on GPS navigation of the wave

wash over the antenna.

21

The use of an accelerometer, instead of a gyroscope, to determine the climb angle

of the AUV is explored in this research. The accelerometer provides the sensed acceleration

of the AUV, which is composed of the AUVs longitudinal acceleration plus the

gravitational acceleration multiplied by the sin of the climb angle as seen in Equation 2.

Therefore, with the additional information provided by the depth transducer and the flux-

gate compass, the climb angle and heading can be calculated. A graphical computer

simulation has been developed to simplify the process of determining the climb angle based

on the equations described, and the error of this system under various mission parameters

using various system configurations has been examined. Simulation results can be used to

determine the accuracy requirements of the components in order to meet the overall system

accuracy goal. Any motion restrictions or requirements that may be imposed on the AUV

can also be included in the simulation.

22

IV. SYSTEM DESIGN

A. INTRODUCTION

The Small Autonomous Underwater Vehicle Navigation System (SANS) design

studied in this research is essentially the same as the interim system described in [STEV93]

and [KWAK93] with the exception of a new version of the core module, a new, smaller A

to D converter, and an accelerometer rather than gyroscopes to determine the climb angle

of the AUV while surfacing. Only computer simulation results of the change to an

accelerometer are given. No experimental testing of the complete system has been

performed with the new equipment, although considerable evaluation of components has

been conducted as part of the work of this thesis.

The hardware for this interim system was chosen to meet the requirements of size,

weight, power and cost. There are many alternative choices for commercially available

hardware, and there are inertial navigation systems which would meet or exceed the

requirements for this project. For example, Systron Donner Corporation has a small high

performance inertial measurement unit (IMU) [GYRO92] that is expected to meet the

requirements of this mission. Additionally, its accuracy is sufficient to lenghten the time

required between updates of the sensors to allow the AUV to locate multiple targets before

surfacing to obtain a GPS fix. The baseline system as described in [MCGH92] would

include the hardware needed to accomplish this. However, the cost of those sensors

prohibited them from being included in this testing. This chapter describes the hardware

used in this modified interim system. Technical specifications of each device are included

in Appendix A.

The software design of the SANS has not been modified in any way since it was

described in [STEV93]. It is an object-oriented design in Ada, using assembly language for

low level, high frequency operations. The software is made up of three primary operations

related to the mission. These operations are monitoring the AUV, navigation data-logging,

and GPS data-logging. Each of these operations consists of software objects, and

operations performed within that object that are related to individual sensor data. In order

23

to ensure that the software could be adapted as the SANS evolves, the software was

designed with code reuse as an important feature. A high level description of the software

is included in this chapter.

B. HARDWARE DESCRIPTION

The hardware design chosen to accomplish the mission requirements described in

Chapter III are shown in Figure 2. The total volume of the equipment must not exceed 120

cubic inches, therefore size was a primary concern in choosing hardware. Recent advances

in miniaturization have made the task of finding adequate equipment in small sizes much

easier, but miniaturization adds to the cost of the equipment.

ac Acceleromnenter

A/D I Depth Cell

F uH d e l
DFlux

G ate Cro[m pass

Mission [P

ComputerReceiver

S[Platform Interface[GPSnn

St°orage

Figure 2. Hardware Block Diagram for Interim SANS after [KWAK93]

1. Mission Computer

Dovatron E.S.P. 8680 (Extra Small Package) core module, shown in Figure 3, was

designed specifically for the developer who has space and power limitations which require

24

off-the-shelf PC-compatible solutions. The E.S.P. provides small size, modularity, PC-

compatibility, low power consumption, and availability of many off-the-shelf modules.

The core module contains a graphics controller, serial interface, memory, keyboard

controller and ROM-based software. It can be used with any IBM-XT compatible keyboard

and monochrome or color CGA monitor. The core module contains a 14 MHz Chips and

Technologies F8680 PC/CHIP, 512 kilobytes or 1 megabyte of dynamic RAM, ROM-

based software, a PCMCIA connector which can have up to 32 MB of memory, and the

necessary support chips. The core module memory can be expanded using additional

modules that plug into the backplane. [ESP93- 1] The core module is 1.7 x 5.2 x 4.7 inches

(41.54 cubic inches), and all modules are designed to conform to that standard E.S.P.

dimension.

Figure 3. E.S.P 8680 Core Module

In order to conserve power, there are four different power modes. "Run" mode is

the normal operating mode which consumes the most power but offers full PC/CHIP

performance. The "drowsy" mode uses PC/CHIP hardware to insert delay cycles between

instructions. This is typically used when performance is not important, but low-level

25

processing is required. "Sleep" mode stops all of the clocks to the PC/CHIP, and they are

not restarted until an interrupt or DMA request occurs. In the "suspend" mode, the real-time

clock inside the chip is powered, and the external memory may be powered. This allows

the application to be suspended, and it can be resumed at any time. An input to the PC/CHIP

is used to control the entry into and exit from suspend mode. The software will bring the

system to an orderly shutdown and when returning to normal operations will restore the

clocks and power to the module, with all internal registers and memory preserved. System

power can be reduced to microwatts while in suspend mode. [ESP93-I]

The E.S.P. 8680 comes with a Flash EPROM (Erasable Programmable Read Only

Memory), which is an electrically-erasable ROM that can be reprogrammed. Using Flash

memory technology, this add-on card emulates an ordinary magnetic Hard Disk. The disk

portion of the ROM can be read, written and edited without removing the ROM or using

additional devices. It is mounted in a standard 32-pin PLCC socket. The E.S.P. Flash Disk

is a memory card which is non-volatile, programmable and low power, that appears just

like a hard disk drive to the operating system and can be used with any program that runs

under DOS. No device drivers or other software are required. [ESP93-3] The Flash

EPROM is available in capacities from 1 to 16 MB, and is 1.7 x 5.2 inches, the standard

E.S.P. form factor.

The E.S.P. 8680 has a PC Memory Card International Association (PCMCIA)

connector and electrical interface for memory cards. The interface supports ROM, RAM

and flash memory cards, and can provide up to 32 MB of memory. [ESP93- 1]

2. A to D Converter

The Dovatron E.S.P. Analog to Digital Module, as seen in Figure 4, is based on an

existing ISA plug-in card. It provides an interface for data acquisition, control, monitoring.

and parameter measurement. This module provides for measurement of up to 16 single-

ended channels (in sequence mode, the sequencer address starts at 0, and progresses until

the address count is equal to the count selected in the program, so only 15 channels are

26

usable), or 8 channels in differential mode, and includes many of the features normally

found on full sized PC peripheral A to D cards. The module uses an Intel 82C54

programmable interval timer which provides three independent 16-bit counters, each with

six programmable counter modes and either binary or BCD counting. Again this E.S.P.

converter is in the standard size of 1.7 x 5.2 x 0.7 inches. [ESP93-2]

'...

Figure 4. E.S.P. A to D Converter

3. GPS Receiver

The Motorola PVT6 receiver, shown in Figure 5, is capable of tracking six satellites

simultaneously and of performing real-time differential processing. It can provide better

than 25 meter position accuracy and 0.1 meter/second velocity accuracy without selective

availability (S/A) on, without differential processing. Differential processing improves the

accuracy to one to five meters. It can be powered with unregulated 12 Vdc or regulated 5

Vdc. Keep-alive random access memory (RAM) allows the receiver to retain satellite

ephemeris data and real-time-clock (RTC) information which require an external 12 V or

27

+ + !i i
.

..................

@ ii~iiiiiiiiiiiii{!!!iiiiiii~iii!•i- : :+ + +i
iiii~iii~ ii~++i~i~iii~i~ii~i~ii:+i~i+ii........+++i~ii

..-..:

.......... ::. - ' •• . . .8 .. •. .- :•': :: i} . : : :-::::: : :::::.:::.+. ;:..... ;... :::...

......... :..:.:... :...:.. . 8::S:8:,:8::$S:::::$+++8 +

S'.

Figure 5. Motorola PVT-6 GPS Receiver

5 V battery. The receiver is 3.94 x 2.76 x 0.65 inches (7.06 cubic inches), weighs 4.5 oz.,

and uses 1.3 W of 5 Vdc input or 1.8 W of 12 Vdc.

There are four different power-up states, cold-2, cold-1, warm and hot as shown in

Table 2, from Motorola's GPS Receiver Technical Manual. Cold-2 is the state the receiver

Cold - 1 N/A N/A U/A 1 month U/A_7.9 mi.....

Cold - 2 N/A N/A N/A U/A U/A 13.0 min 25.0 min

Table 2. TTFF Information from [1MOTO93-1]

is in the first time it is turned on, or any time the receiver is without power for more than a

month. The receiver will not have the current date and time and will have to search for all

available satellites. After it finds the first satellite, the date and time are corrected and it will

continue to acquire other satellites. Cold-I state occurs when the receiver has lost power.

28

so the RTC and the RAM are erased, but the almanac is less than a month old. A cold start

is quite slow, but if the receiver maintains its battery power, a cold start is required only the

first time it is used. Once the receiver is tracking three or more satellites, position

computation is done automatically. The receiver stores the almanac and the ephemeris data

as well as the position of the receiver and the time in RAM, making it much faster to acquire

satellites from a warm or hot start. A warm start is when the position and time are known,

but the ephemeris data is too old to be useful, about four hours. A warm start has a Time-

To-First-Fix (TTFF) of about one minute. Finally, a hot start provides the fastest TTFF,

usually under 30 seconds. It is able to use the ephemeris data stored in RAM, along with

the position, time and almanac to find satellites. The mission of the AUV will allow the

SANS to always remain in a hot state after launch. Reacquisition time is the time it takes

for the receiver to reacquire the satellite signals that are lost when the signals are obscured.

As seen in Table 3, from Motorola's GPS Receiver Technical Manual, this time is a

function of the time that the signal is obscured. Chapter V provides TTFF and reacquisition

S 15 sec < <2.5

30 sec I< 3.5
45 sec < 3.5

60 sec < 3.6

Table 3. Reacquisition Time from [MOT093-1]

time obtained in experiments conducted as part of the research of this thesis.

The PVT6 is capable of providing autonomous position, velocity, and time

information over a serial RS-232 port. There are three different format types available for

the data that can be selected by the user. These are the Motorola Binary Format, National

Marine Electronics Association Standard (NMEA) Format 0183, and the LORAN

Emulation Format. The Motorola Binary Format was chosen for use in the SANS because

it provides both satellite range information and position format messages. The following is

a complete list of output message types available:

29

"* Position/Channel Status

"* Satellite Range Data Output

"* Pseudorange Correction Output

"* Ephemeris Data Output

"* Visible Satellite Status

"* DOP Table Status

"* Almanac Status

"* Almanac Data Output

"* Leap Second Pending

Each output message can be provided one-time or continuously at a selected rate, and

stored for post-processing. The requested output options are stored in nonvolatile memory,

and will remain in effect when the receiver is powered up again. This allows the user to

select all desired options prior to a mission, and the receiver will remember those options

until they are manually changed. [MOTO93- 1I

4. Compass

The KVH C100 Multi-Purpose Digital Compass, shown in Figure 6, is a flux gate

compass which provides three optional outputs. A 4 digit Binary Coded Decimal (BCD)

serial stream formatted digital output is available, and both a linear and sine/cosine voltage

signal analog output are available. Because the digital output would require an additional

serial port connection to the E.S.P. 8680, the analog output is used. The analog output

signal is processed through the A to D converter. The linear voltage output is proportional

to the compass heading from 0. 1 volts (000 degrees) through 1.9 volts (360 degrees). This

voltage is converted to digital data by software triggered A to D conversion mode through

the A to D converter. The analog signal from the compass is connected to the converter

through one of 8 multiplexed input channels. This input channel is selectable at run-time

30

through software. The compass is 1.8 x 4.5 x 1.1 inches (8.91 cubic inches), weighs 2.0

ounces, draws 0.1 W at 5 V dc current and is accurate to _+0.5°. [KVH91]

+++++++ ~ ~...... ..iii~ii
...........i ..+.

____ ____ __. .. '.. ':].
Figure 6. KVH C100 Multi-Purpose Digital Compass

However, this accuracy only applies to a platform with a tilt angle of ±16' if the

compass is mounted to the platform, or ±45' if the compass is mounted on a gimbal which

suspends the compass in the horizontal plane. This would be acceptable for many AUVs,

but not all. For example, a human diver or a dolphin (which constitute biological AUVs

from the perspective of this research) would tend to dive and surface at angles greater than

±45'. Additionally, a gimballed system is susceptible to dynamic vibrations, shock and

acceleration forces of the platform [HELL92I. These factors would not be critical for a

mechanical AUV that can only move and accelerate slowly, and that is restricted to very

shallow climb angles. But, another type of sensor must be used to determine the heading

for other types of AUVs.

A solution to this problem is a strapdown sensor which provides three axes of

magnetic measurement in a single package. The sensor is solid-state with the axes aligned

31

to the mechanical datum of the sensor case. Three-axis strapdown magnetometers provide

better accuracy than a gimballed compass, and do not require restrictions on the tilt angle

of the AUV. [HELL92] An example of this technology is the TCM 1 Electronic Compass

Sensor Module from Precision Navigation. It contains a tri-axial magnetometer and a bi-

axial electrolytic inclinometer in a 2.5 x 2 x 1.1 inch package [PREC94]. Another

advantage of this sensor is that it provides compass heading and pitch and roll readings, in

one sensor, which reduces the number of serial interfaces required in a system.

5. Depth Transducer

The Omega Inc. PX176-1OOS5V Depth Transducer, as seen in Figure 7, is a small

cylinder 2 inches long and 1.5 inches in diameter (3.53 cubic inches), weighs

approximately 5 ounces and has an operating range of 0 to 100 pounds per square inch of

static pressure (PSIS). This equates to 6.7 standard atmospheres or 217 feet (67 meters)

depth of sea water. Analog output is one to six volts dc. A to D conversion is performed by

repetitive software triggered single A to D conversions in the same manner as the compass

signal with the analog input channel also selectable through software. [PARK80]

....iiiiiiiiiiiiiiii•iii!!i'i~i~ ~': •• .. :•••:~~

i

Figure 7. Omega Depth Transducer

32

6. Accelerometer

The Humphrey LA67-0108-1 Linear Accelerometer, seen below in Figure 8, is

available in a measurement range of +0.5 to +1.5 G, is packaged as a small cylinder 1.8

inches long and 1 inch in diameter (0.45 cubic inches), weighs 4 ounces, and provides

accuracy to ±5% of full scale with light vibration, applicable between 10 and 90% of full

scale. The accelerometer measures acceleration using solid state silicon resistors which

change electrical resistance in proportion to the applied mechanical stress. While this

F u. .. H m.....pr.............. A
• ii! -• • i-! === ============= ====== =

..i!: !; =! , iiiiiiiiiii . ..
:: 'i i: '

Figure 8. Humphrey Accelerometer

particular accelerometer is marginally acceptable with regard to accuracy, recent

technology provides much more precise measurement in even small packages [GYRO92].

C. SOFTWARE DESCRIPTION

As developed and described in [STEV93] and [KWAK93], the SANS software

design has three major operations. These operations are:

* Monitoring the AUV for a position fix request

33

• Navigation data-logging for dead reckoning (DR) navigation (post-processed to

determine the ascent vector)

* GPS data-logging for post-processed positional information

AUV monitoring must be performed continuously during the mapping phase in

anticipation of a request by the AUV to determine the position of an underwater object of

interest. Monitoring of the AUV will be done using RS-232 serial line communication.

GPS and dead reckoning navigation will remain inactive until the AUV requests a position

fix, then GPS will be powered. This allows the GPS receiver to be unpowered as much as

possible to conserve battery power.

The GPS receiver will be initialized with the proper receiver modes required for the

mission. The Motorola Binary Format mode will be used, and the receiver will transmit

both position/status and satellite range format messages at a one second rate. The computer

will be configured to receive RS-232 serial communications with connection parameters

specified from an input data file at run-time. The GPS output messages will be written to

non-volatile memory on the host machine prior to real-time processing. The satellite range

data will be stored for post-processing only. The position/status messages will be processed

for navigation updates, and the position data will be used to determine the AUV's current

position using SPS and real-time differential processing.

Submerged navigation in the SANS is accomplished by determining the direction

and horizontal distance from the submerged object to the surfaced location using the depth

change, heading and climb angle, as described in Chapter III, Section C. The outputs will

be pitch attitude (or climb angle)and heading in degrees, and depth in meters, with a

precision adequate to satisfy system accuracy requirements as stated in Chapter III, Section

A.

The interim SANS software programming language is Meridian Ada version 4.1.1.

Assembly language is used for low level, high frequency operations in order to improve

efficiency. An object-oriented design was chosen for the SANS because it allows for a

simpler management of this complex system. Further explanation and software testing is

described in [STEV93].

34

D. SUMMARY

The interim SANS design described in [STEV93] is the basis for the system

described in this report. The use of gyroscopes in that system would require a limitation on

the maximum climb and dive angle of the AUV to prevent gyro tumbling. Therefore, the

research of this thesis explores replacing the gryos with a linear accelerometer to determine

the climb angle of the AUV. Also, a recommendation for changing the compass to a three-

axis magnetometer is made, because the compass would also require restricting the climb

angle of the AUV. A new version of the E.S.P. 8680 core module and a new, smaller E.S.P.

A to D converter replace those hardware pieces from the former system. The hardware for

the SANS was chosen with the mission requirements in mind. Although there are many

possible choices of off-the-shelf hardware for each part of the system shown in Figure 2,

they all must be able to provide the accuracy required, as well as being able to meet the size,

weight, power, and cost constraints of the proposed system. Therefore, possible systems

which may provide better accuracy were not studied due to the increased cost. As further

advances in miniaturization are made, the cost of this hardware will be reduced, making it

easier to meet the baseline SANS requirements explained earlier.

The software design described in [STEV93] is an object-oriented design

programmed in Meridian Ada and assembly language. It is a modular system designed to

make code reuse easy as the SANS hardware and software systems evolve. The software is

broken down into the three logical primary operations of the mission, monitoring the AUV,

navigation data-logging and GPS data-logging. Changes can be made to the objects and

operations in the software as may be required for future research.

35

36

V. DEMONSTRATION SYSTEM TESTING

A. INTRODUCTION

The technical specifications of the hardware for the SANS, discussed earlier in

Chapter IV and listed in Appendix A, were provided by the manufacturers of the

equipment. This chapter will present the methods and results of experimental testing

performed to determine the accuracy and speed of acquisition of the GPS receiver under

various circumstances. Static testing was performed in an attempt to confirm Motorola's

specifications given in [MOT093- 1]. Additional static testing was performed to obtain data

related to the time required for tracking three satellites after being powered off. This

information is used to determine the time required before differential processing could be

used to determine a more accurate position fix.

In order to determine the extent of degradation of the GPS signal caused by standing

water covering the antenna, a series of bench tests were performed. This was designed to

relate to the effects of the wave wash under normal conditions at sea. Finally, an actual sea

test was done to determine the effects of normal wave-wash over the GPS antenna, and

executing frequent dives, while recording position and range data.

B. STATIC TEST RESULTS

The acquisition time and accuracy of the GPS receiver are the limiting factor in the

overall accuracy of the SANS. Experimental static testing was performed to confirm the

results presented in Chapter IV. To determine the acquisition time, or Time-To-First-Fix

(TTFF) of the receiver in both hot and warm power-up states, samples were taken with the

receiver off from 90 seconds to 6 hours. A GPS antenna was mounted on the roof of

Spanagel Hall at the Naval Postgraduate School, at a known, surveyed location, nearly free

of any signal obstructions. The GPS receiver was connected to this antenna, a PC, and a

relay box. This relay box is used to interrupt the 12 volt main power supply to the receiver

for a specified time. The receiver remained connected to the 5 volt battery or "Keep Alive"

37

power the entire time. This allowed the receiver to retain the real-time clock and the last

known coordinates stored in RAM.

The relay box used in this testing was controlled by a general serial I/O handler

called GEORGE, written and developed by Dr. James Clynch. GEORGE is capable of

providing various functions that act as a terminal emulator through a PC parallel port

[CLYN92-2]. Control programs in GEORGE were written to send signals at specified

times to the relay box. For example, in order to determine the TTFF of the GPS receiver

after 90 seconds off, GEORGE would signal the relay box to turn on for 2 minutes, then

turn off for 90 seconds, and loop. The receiver was set up to write position and range data

to a file every second. This permitted recording of the acquisition time and the number of

satellites tracked after power was returned to the receiver. The results of these tests are

shown in Appendix C, and are summarized below in Table 4. The TITF of the receiver is

ACQUISITIO..ACQUINmON
TIEFOR TM FOR: FIRST FIX

RECEIVER TIM ... ST T.HPik ERROR O

..... MITES APE
...... EOD S..OND......................

90 SECONDS OFF 23.18 23.89 34.69 63

10 MINUTES OFF 22.18 24.01 44.78 35

30 MINUTES OFF 23.97 27.05 32.95 35

1 HOUR OFF 28.79 35.83 33.30 45

3 HOURS OFF 24.46 37.76 41.80 31

6 HOURS OFF 44.33 46.21 30.91 8

Table 4. GPS Static Test Results Summary of Time-To-First-Fix

fairly consistent through three hours off, which is the expected result since the ephemeris

data is still current enough to be useful in acquiring satellites. The first fix position error is

also fairly consistent, and consistent with the SPS level of performance.

38

Observing three satellites will provide two-dimensional position and velocity of the

AUV. Therefore the acquisition time required to track three satellites, and the accuracy of

the position data when tracking three satellites, are also extremely important information

in assessing the overall accuracy of the receiver. The time required to obtain three satellites

increases with the increase in power-off time. The mission requirements are for the AUV

to limit antenna exposure time to 30 seconds, with intervals between exposures of at least

several minutes. The data in Table 4 indicates that these requirements can be met for update

intervals of up to 30 minutes. The first fix from the testing showed that the accuracy of the

receiver is well below the 100 m accuracy available using SPS. The receiver accuracy will

not degrade the overall system accuracy. And with differential post-processing, the

position error should be reduced to an accuracy of 2 to 4 meters.

C. GPS BENCH TEST RESULTS

As stated in Chapter 1I1, during both the transit phase and the mapping phase of the

mission, the AUV needs to be as difficult to detect as possible. Thus, the GPS antenna

mounted on the top of the AUV must not protrude out of the water more than a few inches.

With so little clearance above the surface, normal ocean waves would repeatedly cover the

antenna for short periods of time. This wave-wash would typically last for only a few

seconds at a time, but would occur continuously throughout the mission. One of the

primary goals of this thesis was to determine whether the effect of the wave-wash would

degrade the signal beyond use. In order to determine if the mission requirements could be

met, it would have to be known whether a shallow layer of sea water covering the antenna

would completely obstruct the GPS signal. As a preliminary step in determining this effect,

a bench test was designed. A GPS antenna was mounted on a wooden platform, designed

specifically for this test, at the height of the side supports. The platform side supports hold

a plastic container, which was used because the plastic does not interfere with the GPS

signal. The bottom of the container sat flush with the antenna. This test equipment is shown

in Figure 9. The bench test was performed on the roof of Spanagel Hall, where there are no

39

...........ii~ iiiiii~ii~~,••: iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii~~

Figure 9. Bench Test Equipment

signal obstructions. The antenna was connected to the Motorola GPS receiver with 60 feet

of RG-213 cable, and a laptop computer was used to control the receiver. In two of the test

cases, there were only five satellites visible at the beginning of the test. The other two test

cases started with the receiver tracking six satellites. With the receiver running, sea water

was poured into the plastic container every two minutes. Each pour added a depth of 0.5

mm of water over the antenna. The effect on the number of satellites tracked was recorded,

along with the water depth, and which satellites were being tracked. A graph of the data is

shown in Figure 10. This shows that a depth of between 3 and 5 mm of water can cover the

40)

6 Deviation of 4 tests

Average of 4 tests
5

F-.

2

0 •
0 2 3 456

Millimeters of Sea Water

Figure 10. Bench Test Results

antenna, and the receiver can still track at least three satellites for use in differential post-

processing. In this test, the water was left covering the antenna continuously, until all GPS

signals were lost. Because actual waves would wash over the antenna very quickly,

reacquisition time for additional satellites after the wave recedes, would be very short,

typically less than 3 seconds.

Analysis of an elevation graph of the GPS satellites from the day of the test show

that the satellites that the receiver was able to continue tracking, even with 4 - 6 mm of

water covering the antenna, for those satellites that were at the highest elevation. The lower

the elevation of the satellite during the test, the faster the signal was lost with water over

the antenna. In two different tests, the receiver was able to continue to track one satellite

with 11 mm of water covering the antenna. In both cases, that satellite was almost directly

overhead the antenna during the test. The reason for this is due to the actual path of the

signal underwater. As shown in Figure 11, when the antenna is covered by 5 mm of water,

41

Figure 11. Diagram of Satellite Elevations with Effective Depth of Water

if a satellite is overhead, the signal path travels 5 mm through the water. If the satellite is

at 450 the path through the water is 7.07 mm. If the satellite is at 300, the path travelled is

10 mam. The effective depth of the water is the least when the satellite is directly overhead

at 90'.

The antenna that was used for this test was the antenna that was included in the

Motorola GPS evaluation kit, along with the receiver. This antenna module is a low-profile

antenna with a protective housing that is 4.01 inches in diameter and 0.89 inches thick, and

is the black antenna shown in Figure 12. There are various shapes and sizes of antennas that

could be used. For testing purposes a relatively flat antenna was required to allow the water

to sit over the antenna. However, for the baseline SANS, a f'm-shaped antenna would

probably provide better GPS accuracy and shorter acquisition times since more of the

42

antenna would be out of the water. A smaller, flat antenna could also be used for minimum

detection. A sample of these antennas is shown in Figure 12.

.,-- .-.-.. .,

ntenna use i
Sea Test

Figure 12. Sample GPS Antennas

D. SEA TEST RESULTS

After establishing that the proposed mission requirements could be met based on

the static tests and the bench tests, a sea test was developed. The purpose of the sea test was

to further determine the ability of the GPS receiver to track satellites and obtain position

and range data while the antenna was in the ocean. The first step of this test was to build a

test vehicle that could be used as a limited simulation of an AUV, with the ability to float

on the surface with the antenna just above the water, and with the ability to dive and surface

as needed. A wooden platform was built, shown in Figure 13, which could be towed behind

a boat, with a piece of metal attached to the rear that could be operated like an airplane

43

...

: .+ .,,,........

Figure 13. Sea Test Platform

elevator by pulling on an attached line. This photo shows a preliminary test of the platform.

with a wooden replica of an antenna mounted in the center. The sea test was performed by

towing the platform behind a sailboat in Monterey Bay. This allowed a fairly constant

speed in the water to properly control the platform, with no propeller interfering with the

lines used to control the depth of the platform.

The actual sea test was performed on a cool, sunny afternoon with NW winds at 4

knots and 6 ft swells. The flat Motorola antenna that came with the GPS receiver was used

for the actual test to evaluate the worst case, because the water can sit on top of it. The

antenna was connected to the receiver on the boat, with 6() feet of RG-213 coaxial cable. A

laptop computer was used to view and record the position and range data every second

throughout the test. The test was also recorded on video tape to allow for later re-evaluation

of the test along with the recorded data.

Initially. the equipment was connected and turned on with the platform in the boat.

and the receiver was able to track six satellites. For one hour and six minutes, the platform

and antenna were towed behind the sailboat. The sea test maneuvers that were performed

44

were in the range of ocean wave occurrences that would be likely during the transit phase

of the mission. The maneuvers that were performed and recorded for this test included long,

deep dives to depths of 20 feet or more, such as that seen in Figure 14. During the long dives

Figure 14. Typical Deep Dive

the platform, with the antenna, was typically underwater for 1.5 - 3 minutes. This would be

similar to a large wave crashing over the AUV. Figure 15 is a bar graph of three minutes of

45

Plot of Wet Test Data

6

5

4

0 3

E
Z 2

0
1720 1740 1760 1780 1800 1820 1840 1860 1880 1900

Seconds

Figure 15. Typical Deep Dive Tracking Results

4 Represents Antenna Surfacing

the recorded sea test data. The time is in elapsed seconds beginning when the system was

put in the water. Each bar shows the number of satellites that the receiver was tracking

during that second of the interval. The bars with an arrow indicate that the antenna has

surfaced. This graph shows two dives of about 1 minute each. The time to reacquire three

satellites after surfacing was only 10 seconds in one case and 7 seconds in the other. The

time to reacquire all six satellites was only 13 and 14 seconds.

Short, shallow dives of I - 3 feet were performed and a sample can be seen in Figure

16, where the typical time obscured was 20 - 60 seconds. This would be an example of a

typical ocean wave, during the transit phase. An impulse graph of a typical shallow dive is

shown in Figure 17, where it typically takes less than 10 seconds to reacquire at least three

satellites after first fix. From this graph of the recorded data, the second interval can be used

as a typical short, shallow dive. The antenna was submerged for 40 seconds. It took 6

seconds after surfacing to track three satellites.

46

.; _ _ _ _
. ...

'li

Fiur 16. Typca S..a..ow Dive

PlKo*WtTstDt

611111! p-

4

......

3 3.

z 2 HI

,)6(X) 2620) 2640 2660 26X(0 27MX 27201 27401 2760

Figre 7.Typical Shallow D~ive Tracking Results

SRepresents Antenna Surfacing

47

Finally, very short, very shallow repetitive dives were performed that would cover

the antenna for just 2 - 5 seconds. An example of the bar graph of several short, shallow

dives is shown in Figure 17. This graph shows that with a thin layer of water over the

Plot of Wet Test Data
6

5

4

Oq 3

Z 2

3720 3740 3760 3780 3800 3820 3840 3860 3880 3900
Seconds

Figure 18. Typical Very Short, Shallow Dive Tracking Results

Represents Antenna Surfacing

antenna, it only takes 2 - 4 seconds to reacquire at least three satellites, if lock was ever lost

at all during the submersion. Many times the receiver was able to continue tracking one or

two satellites the entire time the water covered the antenna. This confirms that the GPS

receiver can reacquire satellites quickly after the antenna has been covered by typical wave

action.

Since this test was performed with a flat antenna, a more curved antenna would be

expected to provide even better results, if the mission could allow the additional risk of

detection. Again, as was stated in relation to the bench test results, the satellites that

remained fixed, and that were the first to reacquire during maneuvering, were the satellites

with the highest elevation. Having at least one satellite overhead during the midssion speeds

up the first fix, which provides current ephemeris data for the receiver to find the other

48

satellites. Having more than one satellite overhead will greatly improve the acquisition time

of the SANS.

This sea test was designed with full knowledge of the limitations involved.

Determining when the antenna was completely submerged was difficult due to the distance

from the boat to the antenna. We were unable to determine the exact depth of the water

covering the antenna. Therefore this test was primarily a subjective observation of the

ability of the receiver to continue tracking satellites under typical ocean conditions. As a

way of quantifying the data from the test, a graph of the sea test is shown in Figure 19. This

Probability of Tracking n Satellites

100

n=3-

n= 5
80

n60=6

60

..

40

•..

20

0'
0 5 10 15 20 25 30 35

Seconds

Figure 19. Probability of Tracking n Satellites

graph shows the probability that the receiver was tracking at least n satellites, from n = 3 to

n = 6, at any number of seconds after the antenna surfaced. These results show that,

throughout the entire test, regardless of the submersion time, within 30 seconds after

surfacing, there was over an 80% chance that the receiver was tracking at least three

satellites. Therefore, a mission mapping phase that requires the AUV to remain submerged

for up to 30 minutes, then allows for a surface time of 30 seconds should be attainable and

should not be severely affected by normal wave action. A mission transit phase that

49

requires even shorter submerged times, and allows 30 second surface times, should be

easily obtainable.

E. SIMULATION RESULTS

When the AUV finds an object of interest, it will be required to surface in order to

obtain a GPS fix. This fix will give the location of the AUV on the surface, but to determine

the location of the submerged object, as shown in Figure 1, it is necessary to calculate the

horizontal distance travelled using

AZEq 9A -tan 0E9

where AH is the horiz, ntal distance travelled, AZ is the change in depth, and 0 is the climb

angle. In the SANS, the depth change is measured by the depth transducer. As stated in

Chapter III, using an accelerometer to determine the climb angle of the AUV would allow

for removal of the gyroscopes that were evaluated in [STEV93]. The gyroscopes were

determined to be unacceptable for this mission due to the constraint on the climb angle of

the AUV required to prevent the gyros from tumbling.

In the revised system concept, the accelerometer would be mounted to the

navigation system along the longitudinal body axis of the AUV, because additional errors

would be introduced if the velocity vector of the AUV deviates from the accelerometer

measurement axis. As shown in Equation 2 through Equation 5 in Chapter III, the apparent

climb angle of the AUV is calculated using the sensed acceleration and gravity, where

sin (apparent- 0) = sensed - acceleration/g Eq 10

and the error between the sin of the actual climb angle and the sin of the apparent climb

angle is:

a/g = sin (apparent-0) - sin (0) Eq II

The horizontal error between the actual location and the expected location is calculated

using Equation 12, where AZ is the change in depth of the AUV.

horizontal-error= AZ I Ia Eq 12
tan (60) tan (apparent-0)

50

From these calculations, we can determine what the expected error will be from the

accelerometer, given the actual climb angle, the change in depth and the acceleration, a,

used by the AUV.

These equations were included in a computer simulation of an AUV with a SANS.

By giving the AUV climb angle and an acceleration profile, the simulation program

function "calculate-error" will display the path of the AUV diving or surfacing, and

calculate the horizontal error in meters. The acceleration profile is a list of lists, made up

of the longitudinal acceleration and turning radius of the AUV, and the start and stop time

of that segment in seconds. Each change in acceleration or turning radius requires a

separate list. The program will display a window with a "wire-frame" model of the AUV,

which is redrawn at the end of each list from the acceleration profile, at the current location

of the AUV. An X will mark the location where the AUV is estimated to be, based on the

calculations.

In a climb, initially the AUV would accelerate to its normal surfacing speed,

maintain constant velocity for some time, then decelerate such that the velocity would be

back to zero on the surface. Initially, during the accelerating portion of the climb, the

horizontal error will be negative, that is the computed location is behind the actual location.

During the time of constant velocity, since there is no acceleration, the apparent climb

angle is equal to the actual climb angle, and there is no horizontal error. During the

decelerating portion of the climb, the horizontal error will be positive, and the estimated

location will be forward of the actual location. The error caused during deceleration will

nearly cancel out the error caused during acceleration. The total horizontal error is a sum

of the horizontal error created during each time interval and the error will be decreased

significantly for the entire climb. This method will only be required for computing the

horizontal distance travelled while climbing, so the errors will always be reduced by this

combination of acceleration and deceleration.

A number of simulations were run in order to provide the horizontal errors expected

from the accelerometer under various conditions. These are shown below in Table 5. An

acceleration of 0.98 m/sec2 was used for these calculations, with a maximum velocity of

51

4.9 rn/sec. The horizontal error is reduced further by reducing the acceleration and/or the

maximum velocity of the AUV.

_-~:r 'z' vv "~ r r r rr rzz~ : . .. : : :: : z:: : : :

20° -2.27 m 100 -12.12 m
250 -1.43 m 120 -7.35m

300 -0.98 m 150 -4.28 m

450 -0.35 m 200 -2.27 m

600 0.51 m 300 -0.98 m

Table 5. Sample Horizontal Error Calculations

A sample of the simulation display is shown in Figure 21, which shows the path of

the actual location of the AUV, and the Xs show the estimated location based on the

calculations shown in this chapter. This display is a side view of the AUV during the climb.

In this sample acceleration profile, the AUV will accelerate at 0.98 rn/sec 2 for the first 5

seconds of the climb, reaching a maximum velocity of 4.9 rn/sec. Then the AUV will

maintain a constant velocity for 35.5 seconds, and finally, will decelerate for 5 seconds at

-0.98 n/sec 2. This profile is displayed in Figure 20.

Profile -

S4.9

Seconds

Figure 20. Profile of Sample AUV Surfacing

52

,= L.L,) 0
I-.

N t
• _U

A ffA

C
KU

I-!

o A"

r-,C

53

These calculations show that the total horizontal error introduced by using an

accelerometer to calculate the climb angle, and determine the horizontal distance travelled,

is minor, and will not significantly effect the ability of the SANS to obtain an accuracy of

10 meters rms or better.

F. SUMMARY

This chapter provides an explanation of the experimental tests that were developed

and performed to determine how a navigation system using GPS would perform under the

conditions required by the mission as described in Chapter ff1. It also explains the computer

simulation used to determine the accuracy of the measurement of horizontal distance

travelled by the AUV from a submerged object to the surface. The distance is calculated

based on using an accelerometer to determine the climb angle of the AUV.

Static testing was done to confirm the acquisition time and accuracy of the Motorola

GPS receiver required to track the first satellite, and determine the time required to track

three satellites. This provides information needed to assess the ability to use differential

processing. The static tests show that the receiver is able to acquire a first fix, with three

satellites tracked, within the required 30 seconds, when the receiver is off for 30 minutes

or less. The accuracy of the receiver is well within the 100 meter accuracy level of Standard

Positioning Service (SPS).

The mission of the AUV requires that the SANS and the antenna mounted on the

AUV are as undetectable as possible in order for the mission to remain covert. This means

that the antenna must not protrude out of the water more than a few inches. Therefore,

normal wave activity of the ocean will repeatedly cover the antenna with a thin layer of

water for short periods of time whenever the AUV is surfaced. To determine whether this

layer of water would degrade the GPS signal beyond use, a bench test was performed. This

bench test showed that the receiver was able to continue tracking at least three satellites

while the antenna is continuously covered with 3 to 5 mm of sea water. When the water

obstructs the signal for a short time, and is removed, such as a wave would, the receiver is

able to reacquire additional satellites within 3 - 5 seconds. The antenna used for testing was

54

a flat antenna which would allow water to sit on it. Using a fin shaped antenna would

improve the ability of the receiver to continue tracking since less of the antenna would be

covered at any time. Also, the testing showed that the higher the elevation of the visible

satellites, the better the receiver was able to continue tracking, even with 5 to 11 mm of

water covering the antenna.

As a final test to demonstrate the ability of the SANS to operate in its proposed

environment, an actual sea test was performed on the antenna and receiver. This sea test

used a wooden tow-body, towed behind a sail boat, that could be controlled to float on the

surface of the water, be towed just under the surface, or be made to dive to various depths.

The antenna was mounted on the float, and connected to the receiver with RG-213 cable.

The entire test was recorded on video tape and the position and range data from the receiver

was written to a file for evaluation. During this sea test, various lengths and depths of dives

were performed as samples of the various types of waves that could effect the GPS signal

during the transit phase of the AUV mission. Each of these dives, from very short to long,

deep dives, showed that overall, the receiver was able to reacquire the GPS signal and track

at least three satellites during over 80% of the time. The receiver was typically able to

reacquire three or more satellites within 10 to 12 seconds after surfacing.

A computer simulation was used to determine the error introduced by using the

sensed acceleration from an accelerometer in the SANS to calculate the climb angle of the

AUV when climbing from a submerged object of interest back to the surface. This climb

angle was then used to calculate the horizontal distance travelled from the object to the

surface, to determine the actual location of the object. The simulation results shown in

Table 5 are a sample that illustrate that the horizontal error introduced is minor. Because

the AUV is accelerating and decelerating during the climb, the positive and negative

location errors tend to cancel each other, and the horizontal error would not significantly

reduce the accuracy of the SANS. Additionally, by reducing the acceleration and maximum

velocity of the AUV, the horizontal error is reduced further.

This combination of experimental testing and simulation show that the hardware

configuration as described in Chapter IV is able to meet the requirements for the transit

55

phase and the mission phase. The AUV is able to remain covert, spend no more than 30

seconds on the surface during each interval, have the antenna exposed only a few inches

above the surface, allow a submerged time of up to 30 minutes, and obtain an overall

accuracy of 10 meters rms or better. These -, sts also show that the effects of normal waves

of the ocean should not significantly degrade the capability of the navigation system. The

simulation results show that replacing gyroscopes with an accelerometer should not

degrade the capability of the system either.

56

VI. LISP SIMULATION CODE DESCRIPTION

A. INTRODUCTION

A very basic computer simulation of an AUV and the SANS from this research was

designed in order to improve the ability of researchers to test various theories involved in

the design of the SANS. Replacing the gyroscopes in the SANS used to measure the climb

angle of the AUV when surfacing, with an accelerometer was proposed by Prof. McGhee

in [MCGH93). This change would require using the acceleration sensed by the

accelerometer to calculate the climb angle of the AUV. As discussed previously, this

method would introduce error into the final computation of the horizontal distance travelled

by the AUV from a submerged object back to the surface. In order to reduce the time and

effort required to compute this error, the equations needed were included in the software

for the simulation. By using the simulation, with the required parameters, the expected

horizontal error can be quickly and easily determined.

The simulation was written in CLOS (Common LISP Object System), which

provides an object oriented programming design. Because the SANS is made up of many

parts, an object oriented programming language is preferred. CLOS allows the AUV and

the SANS to be represented as objects and classes, and each sensor within the SANS has a

slot which contains the measurements for that sensor. Another advantage to using CLOS is

that it is an interpretive language. This makes it very simple for the programmer and user

to determine at any time what the status of the objects and their slot values are. This chapter

explains the Hunter simulation code. The basis for this simulation was an Aquarobot

walking machine simulation that was written by Prof. McGhee, and is described in

[DAV193].

B. CLASS AND OBJECT HIERARCHY

Object oriented programming allows a complex system to be designed as a group

of elementary components that are linked together as required by the system. This is done

57

using classes and objects. Classes are the blueprints or forms for a component, while

objects are the components that can be manipulated using the software program. [DAVI93]

A class provides the template for creating many objects. The class provides the

correct information, in each slot, required for that class. A class can inherit from multiple

superclasses, giving it the information from the slots of all of it's superclasses. An abstract

class is designed as a template which can contain information needed by multiple

subclasses. This multiple inheritance reduces the amount of duplicated information. An

abstract class cannot have an object instantiated. Only concrete classes have objects

instantiated from them. [DAVI93]

An object is made from the instantiation of a concrete class. All objects from the

same class have the same slots, although they can all be manipulated individually after

instantiation. Each object is created by making an instance of the class, and each object has

its own name within the program.

C. HUNTER CLASS DEFINITION CODE

The rigid body class is used as a superclass for the Hunter simulation. The hunter

is a subclass of rigid body made up of an AUV and a SANS. The AUV, called dolphin in

this simulation, is made up of a dolphin body, a dorsal fin, a right pectoral fin, a left

pectoralfin, and a tailfin, all of which are separate subclasses of rigid body. The fins are

attached to the body using the link class. The SANS is also attached to the body using the

link class, but the SANS uses linkO and link], and the fins use link2 and link3. The class

hierarchy is shown in Figure 22.

Classes in CLOS are written according to a template with mandatory and optional

information. The CLOS classes allow the use of slots for the items within a class. These

slots are defined and initialized using the :initarg or :initform command. Figure 23 shows

a sample of code for the dependent objects instantiated within the abstract dolphin-fin class.

The make-instance command is used to instantiate objects, such as link2. Functions related

to the class are defined outside of the class definition in defimethods. The "initialize-fin"

58

function requires afin and a dolphin-body as input. Functions can be used to change slot

values, call other functions, and assign variables. [DAVI93]

r Cn

z~

< <

Q) C~)

I I \ \ " t
/ I \ \

U

/I' \ \ m •

Z
w t

1z

Figure 22. CLOS Hunter Class Hierarchy

59

(defclass dolphin-fin (
((fin-attachment-angle
:initarg .fin-attachment-angle
: accessor fin-attachment-angle)

(link2
:initform (make-instance 'link2)
:accessor link2)
(link3
:miniform (make-instance 'link3)
:accessor link3)
(motion-complete-flag
:inizform nil
:accessor motion-complete-flag)
(previous-fin-position
:miniform nil
: accessor previous-fin-position)
(current-fin-position

mnilform nil
:accessor current-fin-position)))

(defclass right-fin (dolphin-fin)
((link2 :initform (make-instance 'link2

:link-length 22
:twist-angle (deg-to-rad 90)
:inboard-joint-displacement 1))

(link3 :initform (make-instance 'link3
:node-list '((0 0 0 1) (0 10 10 1) (44 30 0 1) (0 0 40 1))))))

(defmethod initialize-fin ((fin dolphin-fin) (aqua dolphin))
(setf (inboard-link (link2 fin)) (body aqua))
(setf (inboard-link (link3 fin)) (link2 fin))
(rotate-link (link2 fin) (fin-attachment-angle fin))
(rotate-link (link3 fin) (inboard-joint-angle (link3 fin)))
(setf (current-fin-position fin)

(firstn 3 (first (transform-node-list (link3 fin))))))

Figure 23. CLOS Code Excerpt Defining and Implementing

Dolphin Fin Kinematics

60

D. HUNTER OBJECT INSTANTIATION CODE

The object hierarchy of the simulation is shown in Figure 24. It has one top level

object, the hunter, with the dependent objects as shown.

r - -"1 - - - - - - - - - -

HUNT - I
hunter

IS S

DORSLPHIN

dolphin body

I Ii k

ILEFT FI RIGHT FI
Idolphin fin dolphin fin

SLink3 Link3

DORSAL pentO be

r n

I DORSALDeenen EC ORAL ct

I L~ .Jin0

Figure 24. CLOS Object Hierarchy

61

The hunter simulation creates a hunter object by performing the function "make-

hunter-picture", as seen in Figure 25. This will make an instance of a hunter, with a dolphin

and a SANS, initializes the hunter which will initialize its dependent objects, make an

instance of an X to mark the error location, make an instance of a camera, and take a picture

of the hunter. Even though every hunter is created exactly alike, each one has a different

name within the program and can be manipulated separately.

(defclass hunter 0
((dolphin

:initform (make-instance 'dolphin)
:accessor dolphin)

(sans
:initform (make-instance 'sans)
:accessor sans)

(node-list
:initforrn '((0 0 0 1))

:accessor node-list)))

(defmethod initialize ((hunt] hunter))
(serf delta-t (get-delta-t (sans hunt])))
(initialize (dolphin hunt]))
(initialize-sans (sans hunt]) hunt])
(serf (node-list hunt]) (append (node-list (dolphin hunt]))
(node-list (link] (sans hunt])))))
(update-velocity-growth-rate hunt])
(transform-node-list hunt]))

(definethod make-hunter-picture 0
(setf hunt] (make-instance 'hunter))
(initialize hunt])
(x-picture)
(setf cam] (make-instance 'camera))
(take-picture cam] hunt]))

Figure 25. CLOS Code for Hunter Class

The dependent objects dolphin and SANS, that are part of the top-level object

hunter, and their dependent objects, are created automatically within the code when an

instance of hunter is created. Because they are dependent objects, they cannot be referred

62

to without referring to them through the hunter, and they are all destroyed when the hunter

is destroyed. A sample of code showing the class definition for the dependent object

dolphin is shown in Figure 26.

(defclass dolphin 0
((body

:initform (make-instance 'dolphin-body)
:accessor body)

(right-fin
:iniiform (make-instance 'right-fin .fin-attachment-angle (deg-to-rad 90))
:accessor right-fin)

(left-fin
:initform (make-instance 'left-fin .fin-attachment-angle (deg-to-rad -90))
:accessor left-fin)

(dorsal-fin
:iniform (make-instance 'dorsal-fin :fin-attachment-angle

(deg-to-rad 90))
:accessor dorsal-fin)

(tail-fin
:initform (make-instance 'tail-fin .fin-attachment-angle (deg-to-rad 0))
: accessor tail-fin)

(node-list
:initform '((0 0 0 1))
:accessor node-list)))

Figure 26. CLOS Code for Dolphin Class

E. SIMULATION CODE

In order to calculate the climb angle of the AUV in the Hunter simulation, a number

of functions had to be written. These functions perform the same calculations as those

shown in Equation 9 through Equation 12, in Chapter V. A sample of the functions is shown

in Figure 27. "Set-accelerometer" performs the calculations in Equation 13 and Equation

14, while "update-horizontal-error" performs the calculation in Equation 15.

sensed- acceleration = a + g sin (0) Eq 13

sin (apparent-0) = sin (0) +a/g Eq 14

Ahorizontal-error= AZ(1 nt) Eq 15
tn (6) tan (apparent-O)

63

(definethod set-accelerometer ((hunti hunter))
(self (sensed-acceleration (sans huntl))

(+ (first (velocity-growth-rate (sans huntl)))
(* *gravity* (sin (deg-to-rad (climb-angle (sans hunt])))))))

(setf apparent-climb-angle
(rad-to-deg (asin (+ (sin (deg-to-rad (climb-angle (sans hunt]))))

(/ (first (velocity-growth-rate (sans hunt]))) *gravity*)))))
(update-horizontal-error hunt]))

(definethod update-horizontal-error ((hunt] hunter))
(self (horizontal-error (sans hunt]))

(* (delta-depth (sans hunt1))
(- (I/ (tan (deg-to-rad (climb-angle (sans hunt])))))
(I1 (tan (deg-to-rad apparent-climb-angle)))))))

Figure 27. CLOS Code Excerpt Showing Functions Used to

Calculate Climb Angle

In order to compute the estimated horizontal error introduced by using an

accelerometer to determine the climb angle of the AUV, the hunter simulation requires the

user to assign an acceleration profile and provide the climb angle used for surfacing. An

example of this is shown in Figure 28. The acceleration profile is made up of a list of lists.

(self profile-2070 '((0.98 -4 0 5) (0 -4 5 10) (0 -4 10 15) (0 -4 15 20)
(0 -4 20 25) (0 -4 25 30) (0 -4 30 35) (0 -4 35 40.5)
(-0.98 -4 40.5 45.5)))

(calculate-error-demo '-20 profile-2070)

Figure 28. Sample User Input Required to Calculate

Horizontal Error

The first element in the list, 0.98 in this example, is the acceleration, in mi/sec2. of the AUV

during that time period. The second element is the turn radius of the climb, -4 m. The third

and fourth elements are the start and stop times in seconds for that portion of the profile. In

this sample the AUV will accelerate at 0.98 m/sec 2 for the first 5 seconds of the climb,

64

reaching a maximum velocity of 4.9 m/sec. Then the AUV will maintain a constant velocity

for 35.5 seconds, after which it will decelerate for 5 seconds at -0.98 m/sec2. The function

calculate-error-demo provides the climb angle for the climb of -200, and the desired

acceleration profile. In this example the AUV climbed 68 m. This simulation uses the

standard coordinate system used in aerodynamics, with positive z being down, and negative

z being up.

F. GRAPHICS DISPLAY

The graphical display in CLOS is created using an object called a camera. It was

created as a debugging tool [DAVI93], and in this simulation it can be used to visually

demonstrate the horizontal error at each stage of the climb. The wire-frame diagram of the

hunter, with a dolphin and a SANS is shown in Figure 29 as it would appear on the screen.

ml

Figure 29. Graphical Display of a Hunter

The design of the wire-frame diagrams of the objects is determined by the node list and

65

polygon list for each object. These are used to draw the object. Figure 30 is an example of

the node list used to draw the SANS. Each point is given in centimeters, and the simulation

bases the local coordinate system origin on the center of the dolphin body.

(defclass sans (rigid-body)
((link]

:initform (make-instance 'link] ;in centimeters
:node-list '((0 0 0 1)

(25 10 -22 1) (37 10 -22 1) (37 10 -30 1) (25 10 -30 1)
(25 -10 -22 1) (37 -10 -22 1) (37 -10 -30 1) (25 -10 -30 1)
(37 10 -22 1) (37 -10 -22 1) (37 -10 -30 1) (37 10 -30 1)
(25 10 -22 1) (25 -10 -22 1) (25 -10 -30 1) (25 10 -30 1)

(25 3 -30 1) (25 -3 -30 1) (25 -3 -33 1) (25 3 -33 1)
(31 3 -30 1) (31 -3 -30 1) (31 -3 -33 1) (31 3 -33 1)

(25 3 -30 1) (31 3 -30 1) (31 3 -33 1) (25 3 -33 1)
(25 -3 -30 1) (31 -3 -30 1) (31 -3 -33 1) (25 -3 -33 1)
(25 2 -33 1) (31 2 -33 1) (28 0 -44 1)
(312 -33 1) (31 -2 -33 1) (28 0 -44 1)
(31 -2 -33 1) (25 -2 -33 1) (28 0 -44 1)
(25 -2 -33 1) (25 2 -33 1) (28 0 -44 1))

.polygon-list '((1 2 3 4) (5 6 7 8) (9 10 11 12) (13 14 15 16) (17 18 19 20)
(21 22 23 24) (25 26 27 28) (29 30 31 32) (33 34 35) (36 37 38)
(39 4041) (42 43 44))

:min-joint-angle '0
:max-joint-angle '0)
:accessor link])))

Figure 30. CLOS Code Excerpt Showing Node List of SANS

The camera can be moved to obtain views of the hunter from various angles, and

the movement of the dolphin and its fins can be seen on the screen. Because CLOS is an

interpreted language, the user can see each change or movement of the objects as they are

entered into the command line. A complete listing of all simulation code used in this thesis

is provided in Appendix B.

66

G. SUMMARY

In order to increase the ability to test and evaluate the SANS, a computer simulation

of the system was developed, called a Hunter. As described in Chapter V, this simulation

currently has the capability to determine the estimated errors introduced by using an

accelerometer to measure acceleration and thus calculate the climb angle, and the

horizontal distance travelled by an AUV from a submerged object to the surface. This

would be used to determine the actual location of the object, from the GPS location

obtained after surfacing.

The hunter computer simulation is written in CLOS, and is made up of classes and

objects as would be logical for the design of a system comprised of an AUV, called dolphin

in this simulation, and a SANS. The hunter is the top-level object. The dolphin and the SANS

are comprised of objects as well, and each have slot values that are assigned when created.

The slot values in the SANS are used to store information that would be available from

various sensors in the actual SANS. For example, the SANS has a slot called sensed-

acceleration, which would be a reading from the accelerometer. The class and object

hierarchy and sample code for defining and instantiating classes and objects are shown.

The function "calculate-error" uses the series of equations previously shown to

calculate the horizontal error expected from the use of an accelerometer in the SANS.

Sample code of these equations is provided. The user must provide an acceleration profile

for the AUV to use for the simulation of a climb, as well as the climb angle. This will

require providing the expected acceleration rate of the AUV, the maximum velocity

reached and the expected deceleration rate, as well as the duration of each of these events

during the surfacing maneuver.

In order to better explain and understand the expected actions and responses of the

AUV and SANS, a graphical display of the objects is included in the simulation. This

allows for viewing a simulation of the AUV performing a desired climb.

67

68

VIL CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The mission requirements for the Small Autonomous Underwater Vehicle (AUV)

Navigation System (SANS) were outlined in Chapter I. The hardware testing performed in

this research was done in order to determine whether the mission requirement for having

the GPS antenna at the surface of the ocean while limiting visibility would degrade the

ability of the GPS system beyond use. The mission does not allow the antenna to protrude

out of the water more than a few inches. Therefore, due to normal surface waves, the

antenna will usually be wet, and will repeatedly be covered with water for short periods of

time throughout the mission of the AUV. This research performed a series of experimental

tests that show that the GPS signal is able to penetrate a shallow layer of sea water when it

is covering a GPS antenna, and that the normal wave wash from the ocean should not

significantly degrade the ability of the system to obtain a GPS fix within 30 seconds of

surfacing. During the mission phase, the AUV must be able to submerge for several

minutes at a time and still be able to obtain a GPS fix within 30 seconds after surfacing.

The hardware testing described in Chapter V show that the GPS system is capable of

meeting this requirement.

The miniature gyroscopes used in the SANS design described in [STEV931 needed

to be replaced because the AUV climb angle would have to be limited to prevent gyro

tumbling. In order to determine whether an accelerometer could be used in the system to

determine the climb angle, as described in [MCGH93], extensive error calculations had to

be performed. To simplify the process of calculating these errors, a graphical computer

simulation was written in CLOS (Common LISP Object System). After finding an object

of interest the AUV will be required to surface to obtain a GPS fix. The climb angle of the

surfacing is used to determine the position of the object based on the GPS fix. This

computer simulation determines the horizontal error that is the difference between the

actual location of a submerged object to the position that the SANS sensors expect the

object to be. The simulation is run using various surfacing profiles, based on an

69

acceleration profile that gives the acceleration and turn radius for each second of the

surface. The results of this simulation show that the error introduced from the

accelerometer do not greatly reduce the accuracy of the SANS, and that it could be used to

replace the gyroscopes thereby removing restrictions on the climb angle of the AUV.

All of the hardware components described in this thesis meet or exceed the

requirements for the mission. This research concludes that all of the mission objectives can

be met using the current SANS design.

B. RECOMMENDATIONS

1. Future Research

Recommendations for future research on the SANS project fall into two categories,

software and hardware. The next phase in the software development is to implement and

evaluate the software design from [STEV93] on the E.S.P. 8680. The next phase in the

hardware development is to test the system using differential GPS, either real-time or with

post-processing, to determine the accuracy of the differential system.

Additionally, the new, high performance, low-power TCM 1 Electronic Compass

Sensor Module developed by Precision Navigation could be included in the SANS. It is

based on a triaxial magnetometer system and a biaxial electrolytic inclinometer. Developer

specifications show that this system should be able to meet all mission requirements.

[PREC94]

2. Future Use of Code

The computer simulation written for this research could be further developed for

other purposes. New sensors could be added to the program to determine their expected

accuracy. Forces of motion on the rigid body could be added to improve the realism of the

simulation. The AUV shape and size can be changed easily, as can the acceleration,

velocity and climb angle. These changes could be made to adapt the program to other types

of AUV missions.

70

APPENDIX A: TECHNICAL SPECIFICATIONS

A. DOVATRON ESP-8680 CORE MODULE

Processor: 14 MHz 5-volt 8680 (8086 equivaltnt)

Serial Port: RS-232

Keyboard: Standard controller and direct key switch
matrix scanning

Graphics: CGA (Color Graphics Adapter) or
LCD (Liquid Crystal Display)

Memory: 256K x 8 EPROM or Flash Memory
512K or 1MB DRAM (8-bit or 16-bit
wide memory path)
PCMCIA card slot for up to 16MB Memory

Memory Option: Expansion board adds up to 16MB DRAM

Bus Interface: ISA (Industry Standard Architecture)

Form Factor: 1.7" x 5.1" (13.2cm x 4.3cm)

Power Consumption: Draws from 1 mA (sleep mode) to 350 mA
(peak load powering back-lit LCD and
peripherals)

71

B. DOVATRON E.S.P. A TO D CONVERTER

Input channels: 16 single-ended or 8 differential

A/D resolution: 12-bits (1/4096)

Input ranges: 1.25 mV to 10 V

Programmable Gain: 1 - 8000 (one binary and one decade PGA)

Sample Rate: 333 KHz Maximum (single channel)

Resolution: 20 microvolt minimum

Measurement: AC/DC Coupling, True RMS

RMS Mode: Accuracy 1% above 20 KHz, 250 mSec
response, 100 KHz BW

Other features: 82C54 Three channel programmable timer.
One channel available for general use.
Offset voltage trimmer.

Power Requirements: TBD

72

C. MOTOROLA PVT-6

Receiver Architecture: 6-channel
Li 1575.42 MHz

Tracking Capability: 6 simultaneous satellite vehicles

Dynamics: Velocity : 1000 Knots (514.4 m/sec)
Acceleration: 4 g

Jerk: 5 m/s3

Antenna to Receiver Single coaxial cable

Interconnection: (6dB max loss at L1; 1575.42 MHz)
Typical length with RG58 coaxial cable;

20 feet (6 meters)

Serial Output: RS-232C Interface

Accuracy: Less than 25 meters, SEP (without SA)
Operating Temperature: -30 0C to +800C

Humidity: 95% non-condensing +30 0 C to +60 0 C
Physical Dimensions: 3.94 x 2.76 x 0.65 in

(100 x 70 x 16.5 mm)

Weight: 4.5 ounces (128 grams)

Switched Power: 9 to 16 Vdc or 5 0.25 Vdc

Keep-Alive Power: 4.75 - 16 Vdc; 0.3 mA

Power Consumption (typical): 1.3 W @ 5 Vdc input

1.8 W @ 12 Vdc input

MTBF :65,000 hours (estimated)

Acquisition Time :Hot: 21 sec. typical TTFF

(Time To First Fix, TTFF) Warm: 53 sec. typical TTFF

Reacquisition Time: 15 sec obscured: < 2.5 sec. typical
30 sec obscured: < 3.5 sec typical

45 sec obscured: < 3.5 sec typical
60 sec obscured: < 3.6 sec typical

73

D. KVH C100 DIGITAL COMPASS SENSOR

Accuracy: _+0.5' or ±10 mils RMS

Repeatability: _+0.2' or ±5 mils

Resolution: 0.10 or 5 mils

Dip Angle: ±800 Maintains stated accuracy after
autocal over ±80' Magnetic Dip Angle

Tilt Angle: +160 Dev.= ±0.30 RMS
±450 Dev.= ±0.50 RMS

Electrical Power: Input Voltage: +8 to +20 VDC or
+20 to +30 VDC
(user selectable)

Current Drain: 20 mA DC; nominal

Size: 1.80 x 4.50 x 1.10"
(4.6 cm x 11.4 cm x 2.8 cm)

Weight: 2.0 ounces (57 grams)

Environmental Performance:
Operating Temp.: -220 to +122 0 F

(-300 C to +50 0 C)

Vibration: 30 minutes random
MIL-STD-810

Shock: Handling shock per

MIL-STD-810

Digital Interfaces: Standard RS232 Bidirectional Serial Data

Analog Outputs:
Sine/Cosine: Sine/Cosine output voltage

+2.5V ±I.OV

OR

Linear Voltage: 0 to +3.6VDC into 10K
Ohm minimum load

74

E. OMEGA PX176-100PSIS DEPTH TRANSDUCER

PX176 Specifications at 25°C

PARAMETER MIN TYP MAX UNITS

Full Scale Output 4.90 4.95- 5.10 Vdc
(FSO) @ 250C 5.05

Null Offset @ 250C .85 .95- 1.15 Vdc

1.05

Linearity (Best Fit) ±.2 ±.5 %FSO

Hysteresis ±.25 %FSO

Temperature Error ±.01 ±.02 %FSO/PC
Null 00 to 85°C

-550 to 00C +850C to 1050C ±.02 %FSO/PC

Sensitivity 0' to 850 C ±.01 ±.02 %FSO/°C

-550 to 0°C +85°C to 1050C ±.02 %FSO/0 C

Stability (1 year) ±1.0 %FSO

Frequency Response 10 kHz

Supply Voltage 9 20 Vdc

Supply Current (Quiecent) 15 mA

Operating Tempurature -55 0C 105 0C

FSO is the voltage change between minimum and rated pressure.
For example: NOM V0 = 1.00 V @ Null Pressure, NOM V0 = 6.00 V @ Rated Pressure,
FSO = (6.00 - 1.00) = 5.00 V.

75

F. HUMPHREY LA67-0108-1 LINEAR ACCELEROMETER

Range: +0.5 to +1.5 G

Undamped Natural Frequency: 11.5 Hz approximately

Damping Factor: 1.3 ± 0.3 of Critical at +25 0 C

Potentiometer Resistance: 5000 Ohms ±10%

Power Dissipation: 0.5 W maximum

Noise: 2.0% full scale maximum

Resolution: 0.1% full scale maximum

Accuracy: ±5% of full scale (with light vibration)
applicable between 10 and 90% full scale

Static Threshold: 0.15 G maximum

Insulation Resistance: 50 Megohms min. between all isolated
circuits and between any terminals and
case when measured with 500 Vdc at
standard atmospheric conditions

Temperature:
Non-Operating: -80°F to +160°F

Operating: -65°F to +160°F

Acceleration: 15 G in each axis

Shock: 15 G, 11 msec duration

Sinusoidal Vibration: 0.02 inch D.A., 5 to 11 Hz;
0.13 G, 11 to 44 Hz;
2 G, 44 to 500 Hz

Sealing: Hermetic

Service Life: 25 x 106 cycles minimum

Weight: 4 ounces

76

APPENDIX B: SIMULATION CODE

•** camera.cl **

(require :xcw)

(cw:initialize-common-windows)

(defclass camera (rigid-body)

((focal-length
:accessor focal-length
:initform 6)

(posture
:accessor posture ; azim elev roll x y z

:initform (list 0 0 0 -300 0 0))

(camera-window

:accessor camera-window
:initform (cw:make-window-stream :borders 5

:left 100

:bottom 300
:width 900

:height 400
:title "Dolphin"

:activate-p t))
(H-matrix
:initform (homogeneous-transform (deg-to-rad -90) 0 0 0 300 0))

(inverse-H-matrix

:accessor inverse-H-matrix
:initform (inverse-H (homogeneous-transform

(deg-to-rad -90) 0 0 0 300 0)))

(enlargement-factor
:accessor enlargement-factor

:initform 30)))

(defun create-camera- 1 I
(setf camera- 1 (make-instance 'camera)))

77

*** Draw picture functions ***

(defmethod take-picture ((camera camera) (body rigid-body))

(let ((camera-space-node-list (mapcar #'(lambda (node-location)
(post-multiply (inverse-H-matrix camera) node-location))

(transformed-node-list body))))

(dolist (polygon (polygon-list body))

(clip-and-draw-polygon camera polygon camera-space-node-list))))

(defmethod erase-camera-window ((camera camera))
(cw:clear (camera-window camera)))

(defmethod caml(0
(setf caml (make-instance 'camera)))

(defmethod clear ((camera camera))

(cw:clear (camera-window camera)))

(defmethod flush ((camera camera))

(cw:flush (camera-window camera)))

(defmethod new-picture ((camera camera) (body rigid-body))
(erase-camera-window camera)

(take-picture camera body))

(defmethod clip-and-draw-polygon
((camera camera) polygon node-coord-list)

(do* ((initial-point (nth (first polygon) node-coord-list))
(from-point initial-point to-point)
(remaining-nodes (rest polygon) (rest remaining-nodes))

(to-point (nth (first remaining-nodes) node-coord-list)
(if (not (null (first remaining-nodes)))

(nth (first remaining-nodes) node-coord-list))))
((null to-point)

(draw-clipped-projection camera from-point initial-point))

(draw-clipped-projection camera from-point to-point)))

78

(defmethod draw-clipped-projection ((camera camera)
from-point to-point)

(cond ((and (<= (first from-point) (focal-length camera))
(<= (first to-point) (focal-length camera))) nil)

((<= (first from-point) (focal-length camera))
(draw-line-in-window camera

(perspective-transform camera
(from-clip camera from-point to-point))

(perspective-transform camera to-point)))
((<= (first to-point) (focal-length camera))

(draw-line-in-window camera
(perspective-transform camera from-point)
(perspective-transform camera

(to-clip camera from-point to-point))))
(t (draw-line-in-window camera

(perspective-transform camera from-point)
(perspective-transform camera to-point)))))

(defmethod from-clip ((camera camera) from-point to-point)
(let ((scale-factor (/ (- (focal-length camera) (first from-point))

(- (first to-point) (first from-po~it)))))
(list (+ (first from-point)

(* scale-factor (- (first to-point) (first from-point))))
(+ (second from-point)

(* scale-factor (- (second to-point) (second from-point))))
(+ (third from-point)

(* scale-factor (- (third to-point) (third from-point)))) 1)))

(defmethod to-clip ((camera camera) from-point to-point)
(from-clip camera to-point from-point))

(defmethod draw-line-in-window ((camera camera) start end)
(cw:draw-line (camera-window camera)

(cw:make-position :x (first start) :y (second start))
(cw:make-position :x (first end) :y (second end))
:brush-width 1))

79

(defmethod perspective-transform ((camera camera) point-in-camera-space)
(let* ((enlargement-factor (enlargement-factor camera))

(focal-length (focal-length camera))
(x (first point-in-camera-space)) ;x axis is along opical axis
(y (second point-in-camera-space)) ;y is out right side of camera
(z (third point-in-camera-space))) ;z is out bottom of camera

(list (+ (round (* enlargement-factor (/ (* focal-length y) x)))
150) ;to right in camera window

(+ 150 (round (* enlargement-factor (/(* focal-length (- z)) x))))))) ;up in camera
window

; *** Position camera functions**

(defmethod move-camera ((camera camera) azimuth elevation roll x y z)
(setf (H-matrix camera) (homogeneous-transform azimuth elevation roll x y z))
(setf (inverse-H-matrix camera) (inverse-H (H-matrix camera))))

(defmethod zoom-camera ((camera camera) zoom-amount)
(setf (slot-value camera 'enlargement-factor)
(+ (slot-value camera 'enlargement-factor) zoom-amount)))

Rotation in x-y plane about origin
(defmethod rotate-camera ((camera camera) angle-increment) ; in degrees

(let* ((new-position (posture camera))
(radius (sqrt (+ (* (fourth new-position) (fourth new-position))

(* (fifth new-position) (fifth new-position)))))
(heading (atan (fourth new-position)

(fifth new-position)))
(angle (deg-to-rad angle-increment))
(new-heading (+ heading angle)))

(setf (first new-position) (- (first new-position) angle)
(fourth new-position) (* radius (sin new-heading))
(fifth new-position) (* radius (cos new-heading))
(posture camera) new-position
(H-matrix camera)
(homogeneous-transform (first new-position)

(second new-position) (third new-position) (fourth new-position)
(fifth new-position) (sixth new-position))

(inverse-H-matrix camera) (inverse-H (H-matrix camera)))))

80

; Vertical tilting about origin in a plane perpendicular to x-y plane
; Max tilt (90 or -90 deg) when top or bottom view of x-y plane is achieved
(defmethod tilt-camera ((camera camera) angle-increment) ; in degrees

(let* ((new-position (posture camera))
(radius (sqrt (+ (* (fourth new-position) (fourth new-position))

(* (fifth new-position) (fifth new-position))
(* (sixth new-position) (sixth new-position)))))

(tilt (atan (sixth new-position)
(sqrt (+ (* (fourth new-position) (fourth new-position))

(* (fifth new-position) (fifth new-position))))))
heading (atan (fourth new-position)

(fifth new-position)))
(angle (deg-to-rad angle-increment))
(new-tilt (cond ((< (abs (+ tilt angle)) tilt-limit) (+ tilt angle))

(t (cond ((minusp (+ tilt angle)) (* -1 tilt-limit))
(t tilt-limit))))))

(setf (second new-position) new-tilt
(fourth new-position)
(cond ((= (abs tilt) (abs new-tilt) tilt-limit)

(fourth new-position))
(t (* radius (sin heading) (cos new-tilt))))

(fifth new-position)
(cond ((= (abs tilt) (abs new-tilt) tilt-limit)

(fifth new-position))
(t (* radius (cos heading) (cos new-tilt))))

(sixth new-position)
(cond ((= (abs tilt) (abs new-tilt) tilt-limit)

(sixth new-position))
(t (* radius (sin new-tilt))))

(posture camera) new-position
(H-matrix camera)
(homogeneous-transform (first new-position)

(second new-position) (third new-position) (fourth new-position)
(fifth new-position) (sixth new-position))

(inverse-H-matrix camera) (inverse-H (H-matrix camera)))))

(defun deg-to-rad (angle) (* .017453292519943295 angle))
(defconstant tilt-limit (deg-to-rad 89.9))

81

(defun three-cameras 0
(setf caml (make-instance 'camera))
(setf (camera-window cam 1) (cw:make-window-stream

:borders 5
:left 900
:bottom 0
:width 300
:height 300
:title "Dolphin CamI"
:activate-p t))

(setf cam2 (make-instance 'camera))
(setf (camera-window cam2) (cw:make-window-stream

:borders 5
:left 600
:bottom 0
:width 300
:height 300
:tifle "Dolphin Cam2"
:activate-p t))

(setf cam3 (make-instance 'camera))
(setf (camera-window cam3) (cw:make-window-stream

:borders 5
:left 300
:bottom 0
:width 300
:height 300
:tidle "Dolphin Cam3"
:activate-p t))

(move-camera cami 0 (deg-to-rad -90) 0 0 0 -400) ; top view
(move-camera ca-n2 0 0 0 -400 0 0) rear view
(move-camera cam3 (deg-to-rad -90) 0 0 0 400 0)) ; side view

(defmethod take-three 0
(take-picture cami hunti)
(take-picture cam2 huntl)
(take-picture cam3 huntl))

(defmethod three-new-pictures 0
(clear-three)
(take-three))

82

(defmethod take-three-dolphins 0
(take-picture caml flip)
(take-picture cam2 flip)
(take-picture cam3 flip))

(defun clear-three 0
(cw:clear (camera-window caml))
(cw:clear (camera-window cam2))
(cw:clear (camera-window cam3)))

(defun flush-three 0
(cw:flush (camera-window caml))
(cw:flush (camera-window cam2))
(cw:flush (camera-window cam3)))

(defmethod zooml ((camera camera))
(move-camera camera (deg-to-rad -90) 0 0 0 20 0))

(defmethod zoom2 ((camera camera))
(move-camera camera (deg-to-rad -90) 0 0 0 15 0))

(defmethod zoom3 ((camera camera))
(move-camera camera (deg-to-rad -90) 0 0 0 10 0))

(defmethod zooml-three ()
(move-camera camI (deg-to-rad -90) 0 0 0 20 0)
(move-camera cam2 0 0 0 -20 0 0)
(move-camera cam3 0 (deg-to-rad -90) 0 0 0 -20))

(defmethod zoom2-three (
(move-camera camI (deg-to-rq! -90) 0 0 0 15 0)
(move-camera cam2 0 0 0 -15 0 0)
(move-camera cam3 0 (deg-to-rad -90) 0 0 0 -15))

(defmethod zoom3-three ()
(move-camera camI (deg-to-rad -90) 0 0 0 10 0)
(move-camera cam2 0 0 0 -10 0 0)
(move-camera cam3 0 (deg-to-rad -90) 0 0 0 -10))

83

(defmethod zoom-three ()
(move-camera caml 0 (deg-to-rad -90) 0 0 0 -200)
(move-camera cam2 0 0 0 -200 0 0)
(move-camera cam3 (deg-to-rad -90) 0 0 0 200 0))

*** Auxiliary functions **

(defun kill 0
(cw:kill-common-windows))

(defun reset-windows 0
(kill)
(cw:initialize-common-windows))

84

** dolphin.cl **

(defclass dolphin 0
((body

:initform (make-instance 'dolphin-body)
:accessor body)

(right-fin
:initform (make-instance 'right-fin

:fin-attachment-angle (deg-to-rad 90))
:accessor right-fin)

(left-fin
:initform (make-instance 'left-fin

:fin-attachment-angle (deg-to-rad -90))
:accessor left-fin)

(dorsal-fin
:initform (make-instance 'dorsal-fin

:fin-attachment-angle (deg-to-rad 90))
:accessor dorsal-fin)

(tail-fin
:initform (make-instance 'tail-fin

:fin-attachment-angle (deg-to-rad 0))
:accessor tail-fin)

(node-list
:initform '((000 1))
:accessor node-list)))

85

(defclass dolphin-body (rigid-body)
((location

:initform '(0 0 0))
(velocity
:initform '(0 0 0 0 0 0))

(velocity-growth-rate
:initform '(0 0 0 0 0 0))

(mass
:initform 400)

(node-list

:initform ; in centimeters
'((0001)

(55 22 -22 1) (55 22 22 1) (-50 22 22 1) (-50 22 -22 1) ;body
(55 -22 -22 1) (55 -22 22 1) (-50 -22 22 1) (-50 -22 -22 1) ;body
(55 -22 -22 1) (55 -22 22 1) (55 22 22 1) (55 22 -22 1) ;body
(-50 -22 -22 1) (-50 -22 22 1) (-50 22 22 1) (-50 22 -22 1) ;body
(55 22 22 1) (90 0 0 1) (55 22 -22 1) (90 0 0 1) ;nose
(55 -22 22 1) (90 0 0 1) (55 -22 -22 1) (90 0 0 1) ;nose
(-50 22 22 1) (-90 0 0 1) (-50 22 -22 1) (-90 0 0 1) ;end
(-50 -22 22 1) (-90 0 0 1) (-50 -22 -22 1) (-90 0 0 1))) ;end

(polygon-list
:initform '((12 3 4) (5 6 7 8) (9 10 11 12) (13 14 15 16)

(17 18) (19 20) (21 22) (23 24) (25 26)
(27 28) (29 30) (31 32)))

(H-matrix
:initform (homogeneous-transform 0 0 0 0 0 0))

(acceleration-profile

:initform '(((* (- 3) (cos t)) (* (- 3) (sin t)) 0 2)))))

(defmethod initialize ((aqua dolphin))
(initialize (body aqua))
(initialize-fin (right-fin aqua) aqua)
(initialize-fin (left-fin aqua) aqua)
(initialize-fin (dorsal-fin aqua) aqua)
(initialize-fin (tail-fin aqua) aqua)
(setf (node-list aqua) (append (node-list (body aqua))

(node-list (link3 (right-fin aqua)))
(node-list (link3 (left-fin aqua)))
(node-list (link3 (dorsal-fin aqua)))
(node-list (link3 (tail-fin aqua))))))

86

(defun aqua-picture 0
(setf flip (make-instance 'dolphin))

(initialize flip)

(setf cam I (make-instance 'camera))

(take-picture caml flip))

(defmethod take-picture ((camera camera) (aqua dolphin))

(take-picture camera (body aqua))

(take-picture camera (right-fin aqua))

(take-picture camera (left-fin aqua))

(take-picture camera (dorsal-fin aqua))

(take-picture camera (tail-fin aqua)))

(defmethod move-and-flap-incremental ((aqua dolphin) increment-list)

(move-incremental (body aqua) (first increment-list))

(move-incremental (right-fin aqua) (second increment-list))

(move-incremental (left-fin aqua) (third increment-list))

(move-incremental (dorsal-fin aqua) (fourth increment-list))

(move-incremental (tail-fin aqua) (fifth increment-list)))

(defmethod move-incremental ((aqua dolphin) increment-list)

(move-incremental (body aqua) (first increment-list))

(move-incremental (right-fin aqua) '(0))

(move-incremental (left-fin aqua) '(0))

(move-incremental (dorsal-fin aqua) '(0))

(move-incremental (tail-fin aqua) '(0)))

(defun new-dolphin 0
(setf flip (make-instance 'dolphin))

(initialize flip))

87

**fin-link.cl *

(defclass linkO (rotary-link)
((twist-angle :initform 0)
(link-length :initform 0.0)
(inboard-joint-angle :initform 0)
(inboard-joint-displacement : initform 0)
(min-joint-angle :initform (deg-to-rad -360))
(max-joint-angle :initforni (deg-to-rad 360))
(node-list :initforrn '((0 0 0 1) (0 0 0) 1) (-20) 0 0 Im)
(polygon- list: initform '((1 2)M)))

(defclass link i (rotary-link)
((twist-angle :initform 0.0)
(link- length : initform 0.0)
(inboard-joint-angle :initform 0)
(inboard-joint-displacement :initform M)
(mm-joint-angle :initform 0)
(max-joint-angle :initform 0)
(node- list
:initforn '((0 00 1)

(60 2-2.5 -60 1) (60) 22.5 -75 1) (39 22.5 -75 1)
(39 22.5 -60 1).right side
(60 -22.5 -60 1) (60 -22.5 -75 1) (39 -22.5 -75 1)
(39 -22.5 -60 1) :left side
(39 22.5 -60 1) (39 22.5 -75 0 (39 -22.5 -75 1)
(39 -22.5 -60 1) :back
(60 22.5 -60 1) (60 22.5 -75 1) (60 -22.5 -75 1)
(60 -22.5 -60 W)) ;front

(polygon-list :initforrn T(I 2 34) (5 67 81)(9 10 11 12)
(13 14 15 16)M)))

(defclass link2 (rotary-link)
((twist-angle :initform (deg-to-rad 90))
(link-length :initform 0)
(inboard-joint-angle :initform (deg-to-rad 0))
(inboard-joint-displacement :initforrn 0)
(min-joi nt- angle :initform (deg-to-rad -W0)
(max-joint-angle :initform (deg-to-rad 90))
(node-list :initforrn '((0 0 0 1) (0 0 0 1) (0 0 0 1)
(polygon- list: initforrn '((1 2)))))

(defc lass link3 (rotary-link)
((wist-angle :initform (deg-to-rad 0))
(link-length :initform 0)
(inboard-joint-angle :initform (deg-to-rad 0))
(inboard-joint-displacement :initform 0)
(mmn-joint-angle :initform (deg-to-rad -90)))
(max-joint-angle :initform (deg-to-rad 90))
(node- list
:initform '((0 00 1) (3 20 1) (-1 2 01) (-1 5 0 IM)

(polygon-list
:initforni 10 23))))

(defmethod update-A-matrix M(ink link))
(with-slot (twist-angle link-length inboard-joint-angle

inboard-joint-displacement A-matrix) link
(setf A-matrix

(dh- matrix
(cos inboard-joint-angle)
(sin inboard-joint-angle) (cos twist-angle)
(sin twist-angle)

link-length inboard-joint-displacemnent))))

(defmecthod rotate ((link rotary-link) angle)
(setf (inboard-joint-angle link) angle)
(update- A-matrix link)
(setf (H-matrix link) (matrix-multiply (H-matrix (inboard-link link))

(A-matrix link)))
(transform-node-list link))

(dlefmnethod rotate-link ((link rotary-link) angle)
(cond ((> angle (max-joint-angle link))

(rotate link (max-joint-angle link))
(setf (motion-limit-flag link) t))

((< angle (min-joint-angle link))
(rotate link (min-joint-angle link))
(sctf (motion-limit- flag link) t))

(t (rotate link angle) (setf (motion-limit-flag link) nil),)'))

89

**fin.cl *

(defclass dolphin-fin0
((fin-attachment-angle

:initarg :fin-attachment-angle
:accessor fin-attachment-angle)

(link2
:initform (make-instance 'link2)
:accessor link2)

(link3
:initform (make-instance 'link3)
:accessor Iink3)

(motion-complete-flag
:initform nil
:accessor motion-complete- flag)

(previous-tin-position
:initform nil
:accessor previous-fin-position)

(current-fin-position
:initform nil
:accessor current-fin-position)))

(defclass right-fin (dolphin-fin)
((link2 :initform (make-instance 'link2

:link-length 22
:twist-angle (deg-to-rad 90)
:inboard-joint-displacement 1))

(link3 :initform (make-instance 'link3
:node-list '((0 00 1) (0 10 10 1)

(4430O0 1) (0 040 1))))))

(defclass left-fin (dolphin-fin)
((link2 :initformn (make-instance 'link2

:link-length 22
:tx% ist-angle (deg-to-rad 90)
:inboard-joint-displacement 1))

(link3 :initform (make-instance 'link3
:node-list '((0 00 1) (0 10 -10 1)

90

(defclass dorsal-fin (dolphin-fin)
((link2 :initform (make-instance 'link2

:link-length 0
:twist-angle (deg-to-rad 90)))

(link3 :initform (make-instance 'link3
:node-list '((0 0 0 1) (0 -22 -10 1)

(0 -55 -20 1) (0 -22 17 1))))))

(defclass tail-fin (dolphin-fin)
((link2 :initform (make-instance 'link2

:link-length -90
:twist-angle (deg-to-rad 90)
:node-list '((0 00 1) (0 0 0 1))))

(link3 :initform (make-instance 'link3
:node-list '((0 0 0 1) (-22 0 22 1)

(-22 0 -22 1) (0 0 0 1))
:polygon-list '((1 2 3))))))

(defmethod initialize-fin ((fin dolphin-fin) (aqua dolphin))
(setf (inboard-link (link2 fin)) (body aqua))
(setf (inboard-link (link3 fin)) (link2 fin))
(rotate-link (link2 fin) (fin-attachment-angle fin))
(rotate-link (link.3 fin) (inboard-joint-angle (link3 fin)))
(setf (current-fin-position fin)

(firstn 3 (first (transform-node-list (link3 fin))))))

(defmethod take-picture ((camera camera) (fin dolphin-fin))
(take-picture camera (link3 fin)))

(defmethod move-incremental ((fin dolphin-fin) increment-list)
(rotate-link (link2 fin) (fin-attachment-angle fin))
(rotate-link (link3 fin)

(+ (first increment-list) (inboard-joint-angle
(link3 fin))))

(setf (previous-fin-position fin) (current-fin-position fin))
(setf (current-fin-position fin)

(firstn 3 (first (transformed-node-list (link3 fin)))))
(setf (motion-complete-flag fin) (not (or (motion-limit-flag

(link3 fin))))))

91

** hunter.cl **

(defclass hunter 0
((dolphin

:initform (make-instance 'dolphin)
:accessor dolphin)

(sans
:initform (make-instance 'sans)
:accessor sans)

(node-list
:initform '((0 0 0 1))
:accessor node-list)))

(defmethod initialize ((huntl hunter))
(setf delta-t (get-delta-t (sans huntl)))
(initialize (dolphin huntl))
(initialize-sans (sans hunt1) hunti)
(setf (node-list huntl) (append (node-list (dolphin huntl))

(node-list (linkl (sans huntI)))))
(update-velocity-growth-rate hunt 1)
(transform-node-list huntl))

(defmethod make-hunter-picture)
(setf huntl (make-instance 'hunter))
(initialize hunt 1)
(x-picture)
(setf cam I (make-instance 'camera))
(take-picture camI huntl))

(defun create-hunter-! ()
(setf hunt 1 (make-instance 'hunter))
(initialize huntl))

(defmethod take-picture ((camera camera) (hunti hunter))
(take-picture camera (dolphin hunt i))
(take-picture camera (linkI (sans hunti))))

(defun hunter-picture 0
(create-hunter-)
(create-camera- 1)
(take-picture camera- I hunt I))

92

(defmethod move-incremental ((huntl hunter) increment-list)
(move-incremental (dolphin huntl) increment-list)
(move-incremental (sans hunt 1) (first increment-list)))

(defmethod move-and-flap-incremental ((huntl hunter) increment-list)
(move-and-flap-incremental (dolphin huntl) increment-list)
(move-incremental (sans huntl) (first increment-list)))

(defmethod update-posture ((huntl hunter) delta-t)
(setf increment-list (list

(list
(* delta-t (sixth (velocity (sans hunt1))))
(* delta-t (fifth (velocity (sans huntl))))
(* delta-t (fourth (velocity (sans huntl))))
(* delta-t (first (velocity (sans huntl))))
(* delta-t (second (velocity (sans huntl))))
(* delta-t (third (velocity (sans huntl)))))))

(move-incremental huntl increment-list))

(defmethod update-posture-2 ((huntl hunter))
(setf increment-list (list

(list 0 0 0
(delta-range (sans huntl))
0
(delta-depth (sans huntl)))))

(move-incremental huntl increment-list))

(defmethod x-picture 0
(setf x (make-instance 'rigid-body

:node-list '((0 00 1) (500 50 1) (-500 -50 1)
(50 0 -50 1) (-50 0 50 1))))

(initialize x))

(defun hunter-video ()
(create-hunter- 1)
(create-video-camera- i)
(take-picture camera- I hunt I))

(defun hunter-movie 0
(create-hunter- I)
(create-movie-camera- I)
(take-picture camera- I hunt!))

93

(defun hunter-3-movies 0
(create-hunter- 1)
(create- 3-movie-cameras)
(take-three))

(defmethod new-hunter 0
(setf hunt 1 (make-instance 'hunter))
(initialize huntl))

(defmethod new-picture ((camera camera) (huntl1 hunter))
(erase-camera-window camera)
(take-picture camera huntl))

(defmethod display-acceleration-profile ((huntlI hunter)
(camera camera) acceleration-profile)

(dolist (element acceleration-profile)
(read-acceleration-profile (sans huntl1) element)
(setf (location (body (dolphin hunt 1))) (location (sans hunt l)))
(setf (velocity (body (dolphin huntl1))) (velocity (sans huntl1)))
(serf (velocity-giowth-rate (body (dolphin huntl1)))

(velocity-growth-rate (sans huntlI)))
(update-posture huntl1 delta-t)
(take-picture camera huntl1)))

(defrnethod read-acceleration-profile ((body rigid-body) element)
(serf (first (velocity-growth-rate body))
(* 100 (first element))) ;longitudinal

(serf (turn-radius (sans hunt 1)) (* 100 (second element)))
(setf deita-t (- (fourth clement) (third element)))
(calculate-velocity-and-normal body delta-t)
(setf (climb-angle (sans huntl))

(rad-to-deg (atan (I/(third (velocity-growth-rate body))
(first (velocity-growth-rate body))))))

(update-velocity body delta-t)
(update-location (sans huntl) delta-t)
(update-delta-range (sans hunt I))
(set-accelerometer hunt I1))

94

(defmethod calculate-velocity-and-normal ((body rigid-body) delta-t)
(setf delta-v (* (first (velocity-growth-rate body)) delta-t))
(setf new-velocity (+ delta-v (first (velocity body))))
(setf (third (velocity-growth-rate body))
(/(* new-velocity new-velocity) (turn-radius (sans huntl)))))

(defmethod set-accelerometer ((huntl hunter))
(setf (sensed-acceleration (sans huntl))
(+ (first (velocity-growth-rate (sans huntl)))

(* *gravity* (sin (deg-to-rad (climb-angle (sans huntl)))))))

(setf apparent-climb-angle
(rad-to-deg (asin (+ (sin (deg-to-rad (climb-angle (sans huntl))))

(/(first (velocity-growth-rate
(sans huntl))) *gravity*)))))

(update-horizontal-error huntl))

(defmethod update-horizontal-error ((huntl hunter))
(setf (horizontal-error (sans hunt 1))
(* (delta-depth (sans huntl))

(- (/1 (tan (deg-to-rad (climb-angle (sans huntl)))))
(I/ (tan (deg-to-rad apparent-climb-angle)))))))

(defmethod display-acceleration-profile-2 ((huntl hunter)
(camera camera) acceleration-profile) (dolist (element acceler-

ation-profile)
(read-acceleration-profile-2 (sans huntl) element)
(setf (location (body (dolphin huntl))) (location (sans huntl)))

(setf (velocity (body (dolphin huntl))) (velocity (sans huntl)))
(setf (velocity-growth-rate (body (dolphin huntl)))

(velocity-growth-rate (sans huntl)))

(update-posture-2 hunt 1)
(take-picture camera huntl)
(move-horizontal x (+ (horizontal-error (sans huntl))

(first (location (sans huntl))))

(second (location (sans hunt I)))
(third (location (sans huntl))))

(take-picture camera x)))

95

(defmethod read-acceleration-profile-2 ((body rigid-body) element)

(setf (first (velocity-growth-rate body))
(* 100 (first element))) ;longitudinal

(setf (turn-radius (sans huntl)) (* 100 (second element)))

(setf delta-t (- (fourth element) (third element)))

(calculate-velocity-and-normal-2 body delta-t)
(update-delta-range (sans hunt 1))
(update-velocity body delta-t)

(update-location-2 (sans hunt 1) delta-t)
(set-accelerometer huntl))

(defmethod calculate-velocity-and-normal-2 ((body rigid-body) delta-t)

(setf delta-v (* (first (velocity-growth-rate body)) delta-t))

(setf new-velocity (+ delta-v (first (velocity body))))

(setf (third (velocity-growth-rate body))
(* (first (velocity-growth-rate body))

(tan (deg-to-rad (climb-angle (sans huntl)))))))

(defmethod update-velocity-growth-rate ((huntl hunter))

(update-velocity-growth-rate (body (dolphin huntl)))
(update-velocity-growth-rate (sans huntl)))

(defmethod transform-node-list ((huntl hunter))
(transform-node-list (sans huntl))

(transform-node-list (body (dolphin huntl))))

(defmethod run-profile ((huntl hunter))

(display-acceleration-profile huntl caml profile)
(move-horizontal x (+ (horizontal-error (sans huntl))

(first (location (sans huntl))))

(second (location (sans huntl)))
(third (location (sans huntl))))

(take-picture caml x))

(defun h-error 0
(/(horizontal-error (sans huntl)) 100))

96

(defun camera-setup 0
(setf display (make-instance 'camera))
(setf (camera-window display) (cw:make-window-stream

:borders 5
:left 800
:bottom 800
:width 1400
:height 600
:title "Dolphin in Motion"
:activate-p t))

(move-camera display (deg-to-rad -90) 0 0 2800 6000 -2800); side view
(zoom-camera display 20))

; (move-camera display 0 0 0 -40000 0 0) ; rear view
; (move-camera display 0 (deg-to-rad -90) 0 0 0 -40000); top view

; Calculates the error from a given climb angle
(defun calculate-error (climb-angle profile display)

(load "hunter.cl")
(setf huntl (make-instance 'hunter))
(initialize huntl)
(setf (location (sans huntl)) '(0 0 0))

; (three-cameras)
; (take-three)

(x-picture)
(take-picture display huntl)
(setf (climb-angle (sans huntl)) climb-angle)
(setf total-distance '0)
(display-acceleration-profile-2 huntl display profile)
(move-horizontal x (+ (horizontal-error (sans huntl))

(first (location (sans huntl))))
(second (location (sans huntl)))
(third (location (sans huntl))))

(take-picture display huntl)
(take-picture display x)
(h-error))

(defmethod calculate-error-demo (climb-angle profile)
(camera-setup)
(calculate-error (climb-angle profile display)))

97

; Calculates the error by determining climb angle from the given turn radius
(defmethod error-given-turn-radius 0

(setf huntl (make-instance 'hunter))
(initialize huntl)

; (three-cameras)
; (take-three)

(setf display (make-instance 'camera))
(setf (camera-window display) (cw:make-window-stream

:borders 5
:left 600
:bottom 600
:width 600
:height 600
:title "Dolphin in Motion"
:activate-p t))

(move-camera display (deg-to-rad -90) 0 0 0 10000 0) ; side view
; (move-camera display 0 0 0 -40000 0 0) ; rear view
; (move-camera display 0 (deg-to-rad -90) 0 0 0 -40000); top view

(x-picture)
(take-picture display huntl)
(display-acceleration-profile huntl display profile)
(move-horizontal x (+ (horizontal-error (sans huntl))

(first (location (sans huntl))))
(second (location (sans hunti)))
(third (location (sans huntl))))

(take-picture display huntl)
(take-picture display x))

98

;**link.cl *

(defclass link (rigid-body)
((motion-limiit-flag

:initform nil
:accessor motion-limit-flag)

(twist-angle
:initarg :twist-angle
:accessor twist-angle)
(link-length
:initarg :link-Iength
:accessor link-length)

(inboard-joint-angle
:initarg :inboard-joint-angle
:accessor inboard-joint-angle)

(inboard-joint-displacement
:initarg :inboard-joint-displacement
:acces.sor inboard-joint-displacement)

(inboard-link
:initarg :inboard-link
:accessor inboard-link)

(A-matrix
:accessor A-matrix)))

(defclass rotary-link (link)
((min-joint-angle

:initarg :min-joint-angle
:accessor min-joint-angle)

(max-joint-angle
:initarg :max-joint-angle
:accessor max-joint-angle)))

(defclass sliding-link (link)
((min-joint-displacement

:initarg :min-joint-displacement
:accessor mmn-joint-displacement)

(max-joint-displacement
:initarg :max-joint-displacement
:accessor max-joint-displacement)))

99

** load-files-3.cl **

(defun load-hunter 0

Abstract class files
(load "rigid-body.cl")
(load "link.cl")

Specific Graphics and Display files
(load "camera.cl")

Specific Hunter files
(load "profiles.cl")
(load "robot-kinematics.cl")
(load "dolphin.cl")
(load "hunter.cl")
(load "sans.cl")
(load "fin.cl")
(load "fin-link.cl"))

(defun compile-hunter 0
Specific Graphics and Display files
(compile-file "camera.cl") ; must be first to avoid name conflicts

; may complain it can't finddeg-to-rad0
;Abstract class files

(compile-file "rigid-body.cl")
(compile-file "link.cl")

;Specific Hunter files
(compile-file "profiles.cl")
(compile-file "robot-kinematics.cl")
(compile-file "dolphin.cl")
(compile-file "hunter.cl")
(compile-file "sans.cl")
(compile-file "fin.cl")
(compile-file "fin-link.cl"))

(defun load-compiled-hunter 0
;Specific Graphics and Display files

(load "camera.fasl") ; needs to be first to avoid name conflicts error

100

Abstract class files
(load "rigid-body.fas")
(load "iink.fasl")

Specific Hunter files
(load "profiles.fasl")
(load "robot-kinematics.fasl")
(load "dolphin.fasl")
(load "hunter.fasl")
(load "sans.fasl')
(load "fin.fasl")
(load "fin-link.faslr))

101

• * oad-files.cl *

(defun load-hunter 0

Abstract class files
(load "rigid-body.cl")
(load "link.cl")

Specific Graphics and Display files
(load "cameracl")
Specific Hunter files
(load "profiles.cl")
(load "robot-kinematics.cl")
(load "dolphin.cl")
(load "hunter.cl")
(load "sans.cl")
(load "fin.cl")
(load "fin-link.cl"))

(defun compile-hunter ()
Specific Graphics and Display files

(compile-file "camera.cl") ; must be first to avoid name conflicts
; may complain it can't finddeg-to-radO

Abstract class files
(compile-file "rigid-body.cl")
(compile-file "link.cl")

Specific Hunter files
(compile-file "profiles.cl")
(compile-file "robot-kinematics.cl")
(compile-file "dolphin.cl")
(compile-file "hunter.cl")
(compile-file "sans.cl")
(compile-file "fin.cl")
(compile-file "fin-link.cl"))

(defun load-compiled-hunter 0
Specific Graphics and Display files
(load "camera.fasl") ; needs to be first to avoid name conflicts error

102

Abstract class files
(load "rigid-body.fasi])
(load "link.faWl")

Specific Hunter files
(load "profiles.fasr')
(load "robot-kinematics.fasl")
(load "dolphin.fasl")
(load "hunter.fasl")
(load "sans.fasl")
(load "fin.fasl")
(load "fin-link.fasl"))

103

;** newsetup.cl **

(load "load- files.cl")
(load-hunter)
(compile-hunter)
(load-compiled-hunter)

;** setup-3.cl **

(load "load-files-3.cl")
(load-hunter)
(compile-hunter)
(load-compiled-hunter)

;** setup.cl **

(load "load-tiles.cI")
(load-compiled-hunter)

104

* rigid-body.cl *

(defclass rigid-body
0

((location ;The three-vector (x y z) in world coordinates.
:initform '(0 0 0)
:initarg :location
:accessor location)

(velocity ;The six-vector (u v w p q r) in body coordinates.
:initformr'(l 1 .1 .11)
:initarg :velocity
:accessor velocity)

(velocity-growth-rate ;The vector (u-dot v-dot w-dot p-dot q-dot r-dot).
:initform '(0 0 0 0 0 0)
:accessor velocity-growth-rate)

(forces-and-torques ;The vector (Fx Fy Fz L M N) in body coordinates.
:initform '(0 0 0 0 0 0)
:initarg :forces-and-torques
:accessor forces-and-torques)

(moments-of-inertia ;The vector (Ix Jy Iz) in principal axis coordinates.
:initform '(1 1 1)
:initarg :moments-of-inertia
:accessor moments-of-inertia)

(mass
:initform I
:initarg :mass
:accessor mass)

(node-list ;(x y z 1) in body coord for each node. Starts with (0 0 0 1).
:initform '((0 00 1))
:initarg :node-list ; x
:accessor node-list)

(polygon-list
:initform '((1 2) (3 4))
:initarg :polygon-list
:accessor polygon-list)

(transformed-node-list ;(x y z 1) in earth coord for each node in node-list
:accessor transformed-node-list)

(H-matrix
:initform (unit-matrix 4)
:accessor H-matrix)

(current-time
:initform 1979487650
:accessor current-time)

105

(delta-depth
:initform 0
:accessor delta-depth)

(delta-range
:initform 0
:accessor delta-range)

(depth
:initform 0
:accessor depth)

(range
:initform 0
:accessor range)))

(defmethod initialize ((body rigid-body))
(update-velocity-growth-rate body)
(transform-node-list body))

(defmethod move-horizontal ((body rigid-body) x y z)
(setf (H-matrix body)
(homogeneous-transform 0 0 0 x y z))

(transform-node-list body)
(setf (location body) (firstn 3 (first (transformed-node-list body)))))

(defmethod move-body ((body rigid-body) azimuth elevation roll x y z)
(setf (H-matrix body)

(homogeneous-transform azimuth elevation roll x y z))
(transform-node-list body)
(update-position body))

(defmethod move-incremental ((body rigid-body) increment-list)
(setf (H-matrix body)
(matrix-multiply (H-matrix body)

(homogeneous-transform
(first increment-list) ;body z rotation
(second increment-list) ;body y rotation
(third increment-list) ;body x rotation
(fourth increment-list) ;body x translation
(fifth increment-list) ;body y translation
(sixth increment-list)))) ;body z translation

(transform-node-list body)
(update-position body))

106

(defmethod get-delta-t ((body rigid-body))
(let* ((new-time (get-internal-real-time))

(delta-t (/ (- new-time (current-time body)) 1000000)))
(setf (current-time body) new-time)
delta-t))

(defmethod start-timer ((body rigid-body))
(setf (current-time body) (get-internal-real-time)))

(defmethod update-velocity-growth-rate ((body rigid-body))
(setf (velocity-growth-rate body) ;Assumes principal axis coordinates with (multiple-

value-bind ;origin at center of gravity of body.
(Fx Fy Fz L M N u v w p q r Ix ly Iz) ;Declares local variables.
(values-list ;Values assigned.
(append
(forces-and-torques body) (velocity body) (moments-of-inertia body)))

(list (+ (* v r) (* -I w q) (Fx (mass body))
(* *gravity* (first (third (H-matrix body)))))

(+ (* w p) (* -I u r) (/Fy (mass body))
(* *gravity* (second (third (H-matrix body)))))

(+ (* u q) (* - I v p) (/Fz (mass body))
(* *gravity* (third (third (H-matrix body)))))

(/(+ (* (- ly Iz) q r) L) Ix)
(/(+ (* (- Iz Ix) r p) M) ly)
(/(+ (* (- Ix ly) p q) N) Iz))))) ;Value returned.

(defmethod update-velocity ((body rigid-body) delta-t)(defmethod update-posture ((body
rigid-body) delta-t) ;Euler integration.

(move-incremental body
(list (* delta-t (sixth (velocity body)))

(* delta-t (fifth (velocity body)))
(* delta-t (fourth (velocity body)))
(* delta-t (first (velocity body)))
(* delta-t (second (velocity body)))
(* delta-t (third (velocity body))))))

(defmethod update-location ((body rigid-body) delta-t)
(setf (location body)

(vector-add (location body)
(scalar-multiply delta-t (velocity body)))))

107

(defmethod update-location-2 ((body rigid-body) delta-t)
(setf (first (location body)) (range body))
(setf (third (location body)) (depth body)))

(defmethod transform-node-list ((body rigid-body))
(setf (transformed-node-list body)

(mapcar #'(lambda (node-location)
(post-multiply (H-matrix body) node-location))

(node-list body))))

(defmethod update-position ((body rigid-body))
(setf (location body) (firstn 3 (first (transformed-node-list body)))))

(defmethod update-delta-range ((body rigid-body))
(serf delta-distance (+ (* (first (velocity-growth-rate body)) delta-t delta-t .5)

(* (first (velocity body)) delta-t)))
(setf total-distance (+ total-distance delta-distance))
(setf (depth body)
(* (sin (deg-to-rad (climb-angle body))) total-distance))

(serf (delta-depth body)
(* (sin (deg-to-rad (climb-angle body))) delta-distance))

(serf (range body)
(* (cos (deg-to-rad (climb-angle body))) total-distance))

(serf (delta-range body)
(* (cos (deg-to-rad (climb-angle body))) delta-distance)))

(defconstant *gravity* 981) ;cm/sec

(defun deg-to-rad (angle) (* .017453292519943295 angle))

(defun rad-to-deg (radian) (/radian .017453292519943295))

(defun feet-to-cm (feet) (* 30.48 feet))

(defun cm-to-feez (cm) (/cm 30.48))

(setf (velocity body)
(vector-add (velocity body)

(scalar-multiply delta-t (velocity-growth-rate body)))))

108

; ** robot-kinematics.cl **

(defun transpose (matrix) ;A matrix is a list of row vectors.
(cond ((null (cdr matrix)) (mapcar 'list (car matrix)))

(t (mapcar 'cons (car matrix) (transpose (cdr matrix))))))

(defun dot-product (vector- I vector-2) ;A vector is a list of numerical atoms
(apply '+ (mapcar '* vector- I vector-2)))

(defun vector-magnitude (vector) (sqrt (dot-product vector vector)))

(defun post-multiply (matrix vector)
(cond ((null (rest matrix)) (list (dot-product (first matrix) vector)))

(t (cons (dot-product (first matrix) vector)
(post-multiply (rest matrix) vector)))))

(defun pre-multiply (vector matrix)
(post-multiply (transpose matrix) vector))

(defun matrix-multiply (A B) ;A and B are conformable matrices.
(cond ((null (cdr A)) (list (pre-multiply (car A) B)))

(t (cons (pre-multiply (car A) B) (matrix-multiply (cdr A) B)))))

;L is a list of names of conformable matrices.
(defun chain-multiply (L)

(cond ((null (cddr L)) (matrix-multiply (eval (car L)) (eval (cadr L))))
(t (matrix-multiply (eval (car L)) (chain-multiply (cdr L))))))

(defun cycle-left (matrix) (mapcar 'row-cycle-left matrix))

(defun row-cycle-left (row) (append (cdr row) (list (car row))))

(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix))))

(defun unit-vector (one-column length) ;Column count starts at 1.
(do ((n length (1- n))

(vector nil (cons (cond ((= one-column n) 1) (t 0)) vector)))
((zerop n) vector)))

109

(defun unit-matrix (size)
(do ((row-number size (1- row-number))

(I nil (cons (unit-vector row-number size) I)))
((zerop row-number) I)))

,A and B are matrices with equal number of rows.
(defun concat-matrix (A B)

(cond ((null A) B)
(t (cons (append (car A) (car B)) (concat-matrix (cdr A) (cdr B))))))

(defun augment (matrix)
(concat-matrix matrix (unit-matrix (length matrix))))

(defun normalize-row (row) (scalar-multiply (1.0 (car row)) row))

(defun scalar-multiply (scalar vector)
(cond ((null vector) nil)

(t (cons (* scalar (car vector))
(scalar-multiply scalar (cdr vector))))))

;Reduces first column to (1 0 ... 0).
(defun solve-first-column (matrix)
(do* ((remaining-row-list matrix (rest remaining-row-list))

(first-row (normalize-row (first matrix)))
(answer (list first-row)

(cons (vector-add
(first remaining-row-list)
(scalar-multiply
(- (caar remaining-row-list)) first-row)) answer)))

((null (rest remaining-row-list)) (reverse answer))))

(defun vector-add (vector- 1 vector-2) (mapcar '+ vector-I vector-2))

(defun vector-subtract (vector-1 vector-2) (mapcar '- vector-I vector-2))

;Returns leftmost square matrix from argument.
(defun first-square (matrix)

(do ((size (length matrix))
(remainder matrix (rest remainder))
(answer nil (cons (firstn size (first remainder)) answer)))

((null remainder) (reverse answer))))

110

(defun firstn (n list)
(cond ((zerop n) nil)

(t (cons (first list) (firstn (1- n) (rest list))))))

(defun max-car-firstn (n list)
(append (max-car-first (firstn n list)) (nthcdr n list)))

(defun matrix-inverse (M)
(do ((Ml (max-car-first (augment M))

(cond ((null M l) nil)
(t (max-car-firstn n (cycle-left (cycle-up M l))))))

(n (1- (length M)) (1- n)))
((or (minusp n) (null Ml)) (cond ((null Ml) nil) (t (first-square Ml))))

(setq M1 (cond ((zerop (caar Ml)) nil) (t (solve-first-column Ml))))))

;L is a list of lists. This function finds list with
;largest car and moves it to head of list of lists.
(defun max-car-first (L)

(cond ((null (cdr L)) L)
(t (if (> (abs (caar L)) (abs (caar (max-car-first (cdr L))))) L

(append (max-car-first (cdr L)) (list (car L)))))))

(defun dh-matrix (cosrotate sinrotate costwist sintwist length translate)
(list (list cosrotate (- (* costwist sinrotate))

(* sintwist sinrotate) (* length cosrotate))
(list sinrotate (* costwist cosrotate)

(- (* sintwist cosrotate)) (* length sinrotate))
(list 0. sintwist costwist translate) (list 0. 0. 0. 1.)))

(defun homogeneous-transform (azimuth elevation roll x y z)
(rotation-and-translation (sin azimuth) (cos azimuth) (sin elevation)

(cos elevation) (sin roll) (cos rcll) x y z))

(defun rotation-and-translation (spsi cpsi sth cth sphi cphi x y z)
(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi))

(+ (* cpsi sth cphi) (* spsi sphi)) x)
(list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi)

(- (* spsi sth cphi) (* cpsi sphi)) y)
(list (- sth) (* cth sphi) (* cth cphi) z)
(list O. 0. 0. 1.)))

111

;H is a 4x4 homogeneous transformation matrix.
(defun inverse-H (H)

(let* ((minus-P (list (- (fourth (first H)))
(- (fourth (second H)))
(- (fourth (third H)))))

(inverse-R (transpose (first-square (reverse (rest (reverse H))))))
(inverse-P (post-multiply inverse-R minus-P)))

(append (concat-matrix inverse-R (transpose (list inverse-P)))
(list (list 0 0 0 1)))))

(setf x '((1 2) (3 4)))
)

112

; * sans.cl **

(defclass sans (rigid-body)
((location

:initform '(0 0 0)) ;x y z (rigid body dolphin in a plane)
(velocity
:initform '(0 0 0 0 0 0))

(velocity-growth-rate
:nitform '(0 0 0 0 0 0)) ;tangential and normal

(forces-and-torques
:nitform '(0 0 0 0 0 0))

(moments-of-inertia
:initform '(1 1 1))

(mass
:nitform 5)

(H-matrix
:initform (homogeneous-transform 0 0 0 0 0 0))

(sensed-acceleration
:initform '(0 0 0)
:initarg :sensed-acceleration
:accessor sensed-acceleration)

(turn-radius
:initform 0
:initarg :turn-radius
:accessor turn-radius)

(climb-angle
:initform 0
:accessor climb-angle)

(delta-depth
:initform 0
:accessor delta-depth)

(horizontal-error
:initform 0
:accessor horizontal-error)

(fin-attachment-angle
:initarg :fin-attachment-angle
:initform 0
:accessor fin-attachment-angle)

(linkO
:initform (make-instance 'linkO)
:accessor linkO)

(linkl
:initform (make-instance 'link I ;in centimeters

113

:node-list '((0 0 0 1)
(25 10 -22 1) (37 10 -22 1)
(37 10 -30 1) (25 10 -30 1) ;right side
(25 -10 -22 1) (37 -10 -22 1)
(37 -10 -30 1) (25 -10 -30 1) ;left side
(37 10 -22 1) (37 -10 -22 1)
(37 -10 -30 1) (37 10 -30 1) ;front
(25 10 -22 1) (25 -10 -22 1)
(25 -10 -30 1) (25 10 -30 1) ;back

(25 3 -30 1) (25 -3 -30 1)
(25 -3 -33 1) (25 3 -33 1) ; back of antenna
(31 3 -30 1) (31 -3 -30 1)
(31 -3 -33 1) (31 3 -33 1) ; front of antenna
(25 3 -30 1) (31 3 -30 1)
(31 3 -33 1) (25 3 -33 1) ; right side
(25 -3 -30 1) (31 -3 -30 1)
(31 -3 -33 1) (25 -3 -33 1) ; left side

(25 2 -33 1) (31 2 -33 1) (28 0 -44 1)
(31 2 -33 1) (31 -2 -33 1) (28 0 -44 1)
(31 -2 -33 1) (25 -2 -33 1) (28 0 -44 1)
(25 -2 -33 1) (25 2 -33 1) (28 0 -44 1)) ; top of antenna

:polygon-list '((1 2 3 4) (5 6 7 8) (9 10 11 12)
(13 14 15 16) (17 18 19 20)
(21 22 23 24) (25 26 27 28)
(29 30 31 32) (33 34 35) (36 37 38)
(39 40 41) (42 43 44))

:min-joint-angle '0
.max-joint-angle '0)

:accessor link1)
(motion-complete-flag
:initform nil
:accessor motion-complete-flag)

(previous-fin-position
:initform nil
:accessor previous-fin-position)

(current-fin-position
:initform nil
:accessor current-fin-position)))

114

(defmethod initialize-sans ((sans sans) (huntl hunter))
(setf (inboard-link (linkO sans)) (body (dolphin huntl)))
(setf (inboard-link (linkl sans)) (linkO sans))
(rotate-link (linkO sans) (fin-attachment-angle sans))
(rotate-link (linkl sans) (inboard-joint-angle (linkl sans)))
(setf (current-fin-position sans)

(firstn 3 (first (transformed-node-list (linkl sans)))))
(update-velocity-growth-rate sans)
(transform-node-list (linkl sans)))

(defmethod move-incremental ((sans sans) increment-list)
(rotate-link (linkO sans) (fin-attachment-angle sans))
(rotate-link (linkl sans)

(+ (first increment-list) (inboard-joint-angle (linkl sans))))
(setf (previous-fin-position sans) (current-fin-position sans))
(setf (current-fin-position sans)

(firstn 3 (first (transformed-node-list (linkl sans)))))
(setf (motion-complete-flag sans) (not (or (motion-limit-flag (linkO sans))

(motion-limit-flag (linkl sans))))))

115

116

APPENDIX C: PLOTS OF STATIC-TEST DATA

50

45 Mean = 21.82 sec
Standard Deviation = 7.88 sec

40

35

S30

25 " .

20 . . .20'**...* 4 4 4

15

101
0 10 20 30 40 50 60

Trial Number

Figure 31. Motorola First Acquisition Time After Ninety Seconds Off

200

150 1 rms - 35.57 meters

100

0 50 o'4

0o

-50

-100

-150

-200
-200 -150 -100 -50 0 50 100 150 200

Longitude Deviations

Figure 32. Motorola First Acquisition Accuracy After Ninety Seconds Off

117

35
Mean = 22.03 sec

Standard Deviation = 2.64 sec

30

4. 4 .4

200o 4 44

15

10o
0 5 10 15 20 25 30 35

Trial Number

Figure 33. Motorola First Acquisition Time After Ten Minutes Off

200

150 1 rms = 44.78 meters

100

C 50
SO -

UI . .. 4

-
4

-50

-100

-150

-2001 --

"-200 -150 -100 -50 0 50 100 150 200
Longitude Deviations

Figure 34. Motorola First Acquisition Accuracy After Ten Minutes Off

118

50

45 Mean = 23.68 sec
Standard Deviation - 3.76 sec

40

S35

0

S30

25 .. .

20 ...

15

101
0 5 10 15 20 25 30 35

Trial Number

Figure 35. Motorola First Acquisition Time After 30 Minutes Off

200

150 1 rms -49.83 meters

100

p 50

a4 4
. 4.. .

-50

-100

-150

-2001
"-200 -150 -100 -50 0 50 100 150 200

Longitude Deviations

Figure 36. Motorola First Acquisition Accuracy After 30 Minutes Off

119

50

Mean = 27.82 sec45 Standard Deviation = 7.50 sec

40

35

L 30

S 25

20 ----"

15

10,
0 5 10 15 20 25 30 35 40 45

Trial Number

Figure 37. Motorola First Acquisition Time After 1 Hour Off

200

150 1 rms = 33.30 meters

100

50 " "

Us 4

4 4
"0

•- -50" .

-100

-150

-2001
-200 -150 -100 -50 0 50 100 150 200

Longitude Deviations

Figure 38. Motorola First Acquisition Accuracy After 1 Hour Off

120

50

45 Mean = 23.74 sec
Standard Deviation = 5.99 sec

40

35 "

30
U.

25 .. .

20

15

0 5 10 15 20 25 30
Trial Number

Figure 39. Motorola First Acquisition Time After 3 Hours Off

200

150 1 rms = 35.10 meters

100

S50 " .

0 99•
9. .

.= -50

-100

-150

-2001 - - o
-200 -150 -100 -50 0 50 t00 150 200

Longitude Deviations

Figure 40. Motorola First Acquisition Accuracy After 3 Hours Off

121

60

55 Mean = 44.25 sec
Standard Deviation = 2.91 sec

50

0

45

40

35

301
0 1 2 3 4 5 6 7 8 9

Trial Number

Figure 41. Motorola First Acquisition Time After 6 Hours Off

200

150 1 rms = 23.62 meters

100

50

0

-50

-100

-150

-200
-200 -150 -100 -50 0 50 100 150 200

Longitude Deviations

Figure 42. Motorola First Acquisition Accuracy After 6 Hours Off

122

35

Mean =21.68 sec
30 Standard Deviation = 2.09 sec

-• 25. .
o • .to•.

20

15

10,
0 10 20 30 40 50 60

Trial Number

Figure 43. Motorola Time to First Fix After 90 Seconds Off

200

1IS 1 rms=51.11 meters

100

C 50 °.•
0 •4V

- -50

-100

-150

-2001
-200 -150 -100 -50 0 50 100 150 200

Longitude Deviations

Figure 44. Motorola First Fix Accuracy After 90 Seconds Off

123

40

Mean = 23.86 sec
Standard Deviation = 3.39 sec

35

30

C4

25 ...
254 .. 4 • *

20 "

15
0 5 10 15 20 25 30 35

Trial Number

Figure 45. Motorola Time to First Fix After 10 Minutes Off

200

150 1 rms 42.15 meters

100

. 50 .

4 4o

-50 o

-100

-150

-2001
-200 -150 -100 -50 0 50 100 150 200

Longitude Deviations

Figure 46. Motorola First Fix Accuracy After 10 Minutes Off

124

60

55 Mean = 26.37 sec
Standard Deviation = 6.10 sec

50

45

"440

35 "

30

25 . 44

20•

15
0 5 10 15 20 25 30 35

Trial Number

Figure 47. Motorola Time to First Fix After 30 Minutes Off

200

150 1 rms = 59.55 meters

100

S50. -

-50 .*2

-100

-150

-2(X)
-200 -150 -100 -5o 0 50 100 150 200

Longitude Deviations

Figure 48. Motorola First Fix Accuracy After 30 Minutes Off

125

60 .

55 Mean = 34.13 sec

50 Standard Deviation = 11.09 sec

45

C- 40

L 35 3

30

25 *

20

15
0 5 10 15 20 25 30 35 40 45

Trial Number

Figure 49. Motorola Time to First Fix After I Hour Off

200

150 1 rms = 46.07 meters

100

S501

4 : . -.- ."
.2

*n -50 .

-100

-150

-2001
-200 -150 -100 -50 0 50 100 150 2(X)

Longitude Deviations

Figure 50. Motorola First Fix Accuracy After 1 Hour Off

126

60

55* Mean = 36.0 sec
Standard Deviation = 11.59 sec

50

. f.. ...
45

S40

LL 35

30

25
...

20

151
0 5 10 15 20 25 30

Trial Number

Figure 51. Motorola Time to First Fix After 3 Hours Off

200

150 1 rms = 90.45 meters

100

50 °

S 0 •.* .*

-50

-100

-150

-2001
-200 -150 -100 -50 0 50 100 150 200

Longitude Deviations

Figure 52. Motorola First Fix Accuracy After 3 Hours Off

127

60

55 Mean = 46.13 sec
Standard Deviation = 3.04 sec

50

45

-, 40

"W 35LL

30

25

20

15
0 1 2 3 4 5 6 7 8

Trial Number

Figure 53. Motorola Time to First Fix After 6 Hours Off

200

150 1 rms =41.44 meters

100

o 50
Cu

o>

• -50

-100

-150

-2001 -
-200 -150 -100 -50 5 50 100 150 200

Longitude Deviations

Figure 54. Motorola First Fix Accuracy After 6 Hours Off

128

APPENDIX D: GLOSSARY OF TERMS

Almanac Data transmitted by a GPS satellite which includes orbit
information on all the satellites, clock correction, and atmospheric
delay parameters. These data are used to facilitate rapid satellite
acquisition. The orbit information is a subset of the ephemeris data
with reduced accuracy.

Azimuth A horizontal direction expressed as the angular distance between a
fixed direction, such as North, and the direction of the object.

Baseline The three-dimensional (3D) vector distance between a pair of
stations for which simultaneous GPS data has been collected and
processed with differential techniques.

C/A Code The Coarse/Acquisition (or Clear/Acquisition) code modulated
onto the GPS Li signal. This code is a sequence of 1023
pseudorandom binary biphase modulations on the GPS carrier at a
chipping rate of 1.023 MHz, thus having a code repetition period of
one millisecond. This code was selected to provide good
acquisition properties.

CLOS Common LISP Object System

Differential Processing GPS measurements can be differenced between receiver,
satellites, and epochs. Although many combinations are possible,
the present convention for differential processing of GPS phase
measurements, is to take differences between receivers (single
difference), then between satellite (double difference), then
between measurement epochs (triple difference). A single-
difference measurement between receivers is the instantaneous
difference in phase of the signal from the same satellite, measured
by two receivers simultaneously. A double-difference measurement
is obtained by differencing the single difference for one satellite
with respect to the corresponding single difference for a chosen
reference satellite. A triple-difference measurement is the
difference between a double difference at one epoch of time and the
same double difference at the previous epoch of time.

Differential (relative) Processing Determination of relative coordinates of two or
more receivers which are simultaneously tracking the same
satellites. Dynamic differential positioning is a real-time calibration
technique achieved by sending corrections to the roving user from
one or more monitor stations. Static differential GPS involves
determining baseline vectors between pairs of receivers.

129

Dilution of Precision A description of the purely geometrical contribution to the
uncertainty in a position fix, given by the expression DOP = SQRT
TRACE (A A) where A A is the design matrix for the instantaneous
position solution (dependent on satellite-receiver geometry). The
DOP factor depends on the parameters of the position-fix solution.
Standard terms for the GPS application are:

GDOP: Geometric (three position coordinates plus clock offset in
the solution)
PDOP: Position (three coordinates)
GDOP: Horizontal (two horizontal coordinates)
VDOP: Vertical (height only)
TDOP: Time (clock offset only)
RDOP: Relative (normalized to 60 seconds)

Doppler Shift The apparent change in frequency of a received signal due to the
rate of change of the range between the transmitter and receiver.

Elevation Height above mean sea level. Vertical distance above the geoid.

Ephemeris A list of accurate positions or locations of a celestial object as a
function of time. Available as "broadcast ephemeris" or as post-
processed "precise ephemeris".

Epoch Measurement interval or data frequency, as in making observations
every 15 seconds. Loading data using 30-second epochs, means
loading every other measurement.

EEPROM Electrically Erasable Programmable Read Only Memory, a random
access memory device that is generally read but can be erased and
rewritten electrically, often without removing it from its application
system.

EPROM Erasable Programmable Read Only Memory, a random access
device in which individual words can be read but not written. An
EPROM can be erased, often by irradiating it with ultraviolet light.

GDOP Geometric Dilution of Precision. The relationship between errors in
user position and time and in satellite range. GDOP2 = PDOP 2 +
TDOP'

GMT Greenwich Mean Time. Local solar mean time at Greenwich
Meridian.

Inclination The angle between the orbital plane of a body and some reference
plane (e.g. equatorial plane).

130

INS Inertial Navigation System, which contains an Inertial
Measurement Unit (IMU).

Kalman Filter A numerical method used to track a time-varying signal in the
presence of noise. If the signal can be characterized by some
number of parameters that vary slowly with time, then Kalman
filtering can be used to tell how incoming raw measurements
should be processed to best estimate those parameters as a function
of time.

Kinematic Surveying A form of continuous differential carrier-phase surveying requiring
only short periods of data observations. Operational constraints
include starting from or determining a known baseline, and tracking
a minimum of four satellites. One receiver is statically located at a
control point, while others are moved between points to be
measured.

LI The primary L-band signal radiated by each NAVSTAR satellite at
1575.42 MHz. The LI beacon is modulated with the C/A and P
codes, and with the NAV message. L2 is centered at 1227.60 MHz
and is modulated with the P code and the NAV message.

L Band The radio frequency band extending from 390 MHz to (nominally)
1550 MHz.

Multichannel ReceiverA receiver containing many independent channels. Such a receiver
offers highest signal-to-noise ratio (SNR) because each channel
tracks one satellite continuously.

Multipath Interference similar to "ghosts" on a television screen which occurs
when GPS signals arrive at an antenna having traversed different
paths. The signal traversing the longer path will yield a larger
pseudorange estimate and increase the error. Multiple paths may
arise from reflections from structures near the antenna.

Multipath Error A positioning error resulting from interference between radio
waves which have traveled between the transmitter and the receiver
by two paths of different electrical lengths.

Multiplexing Channel A receiver channel which is sequenced through several satellite
signals (each from a specific satellite and at a specific frequency) at
a rate which is synchronous with the satellite message bit-rate (50
bits per second, or 20 milliseconds per bit). Thus, one complete
sequence is completed in a multiple of 20 milliseconds.

131

NAVDATA The 1500-bit Navigation Message broadcast by each satellite at 50
bps on both LI or L2 beacons. This message contains system time,
clock correction parameters, ionospheric delay model parameters,
and the vehicle's ephemeris and health. This information is used to
process GPS signals to obtain user position and velocity.

NAVSTAR The name given to GPS satellites, built by Rockwell International,
which is an acronym formed from NAViatiun System with Time
and Ranging.

PCMCIA PC Memory Card International Association, a voluntary association
responsible for defining the electrical interface to and physical
requirements of memory and 1/0 modules that are approximately
the size of a standard credit card.

PCB Printed Circuit Board

P Code The protected or precise code used on both LI and L2 GPS
beacons. This code will be made available by the DoD only to
authorized users. The P code is a very long (about 1014 bits)
sequence of pseudorandom binary biphase modulations on the GPS
carrier at a chipping rate of 10.23 MHz which does not repeat itself
for about 38 weeks. Each satellite uses a one-week segment of this
code which is unique to each GPS satellite, and is reset each week.

PDOP Position Dilution of Precision, a unitless figure of merit expressing
the relationship between the error in user position and the error in
satellite position. Geometrically, PDOP is proportional to 1 divided
by the volume of the pyramid formed by lines running from the
receiver to four satellites observed. Values considered good for
positioning are small, such as 3. Values greater than 7 are
considered good for positioning are small, such as 3. Values greater
than 7 are considered poor. Thus, small PDOP is associated with
widely separated satellites. A small value of PDOP is important in
positioning, but much less so in surveying.

PLCC Plastic Leadless Chip Carrier, a high-density, integrated circuit
package designed to fit in a socket for easy installation and
removal.

Point Positioning A geographic position produced from one receiver in a stand-alone
mode. At best, position accuracy obtained from a stand-alone
receiver is 15 - 25 meters, depending on the geometry of the
satellites.

132

PPS Precise Positioning Service. The highest level of military dynamic
positioning accuracy that will be provided by GPS, based on the
dual frequency P code and having high anti-jam and anti-spoof
qualities.

PRN Pseudorandom noise, a sequence of digital Is and Os which appear
to be randomly distributed like noise, but which can be exactly
reproduced. The important property of PRN codes is that they have
a low autocorrelation value for all delays or lags except when they
are exactly coincident. Each NAVSTAR satellite has its own unique
C/A and P pseudorandom-noise codes.

Pseudorange A measure of the apparent propagation time from the satellite to the
receiver antenna, expressed as a distance. Pseudorange is obtained
by multiplying the apparent signal-propagation time by the speed of
light. Pseudorange differs from the actual range by the amount that
the satellite and user clocks are offset, by propagation delays, and
other errors. The apparent propagation time is determined from the
time shift required to align (correlate) a replica of the GPS code
generated in the receiver with the received GPS code. The time
shift is the difference between the time of signal reception
(measured in the receiver time frame) and the time of emission
(measured in the satellite time frame).

RAM Random Access Memory, a memory that can conveniently read
from and write to any location. Random access memory contrasts
with sequential access memory which can access only one location
without repositioning a read/write head. Although there are other
random-access devices (such as an EPROM), the acronym RAM
refers only to devices that can read and write a single location at a
time.

ROM Read Only Memory, a random access memory that can be read but
not written. Data in a ROM is either built into the ROM when it is
manufactured or is written into the ROM in a once-only operation
called programming. Devices that can be programmed are more
properly called PROMs.

RDOP Relative Dilution of Precision. See Dilution of Precision.

RMS Root Mean Square.

133

SA Selective Availability. A DoD program to control the accuracy of
pseudorange measurements, whereby the user receives a false
pseudorange which is in error by a controlled amount. Differential
GPS techniques can reduce these effects for local applications.

SEP Spherical Error Probable, a statistical measure of precision defined
as the 50th percentile value of the three-dimensional position error
statistics. Thus, half of the results are within a 3D DEP value.

Sidereal Day Time between two successive upper transits of the vernal equinox.

Spread Spectrum The received GPS signal is a wide bandwidth, low-power signal (-

160 dBW). This property results from modulating the L-band signal
with a PRN code in order to spread the signal energy over a
bandwidth which is much greater than the signal information
bandwidth. This is done to provide the ability to receive all
satellites unambiguously and to provide some resistance to noise
and multipath.

SPS Standard Positioning Service, using the C/A code to provide a
minimum level of dynamic or static positioning capability. The
accuracy of this service will be set at a level consistent with
national security.

TDOP Time Dilution of Precision. See Dilution of Precision.

TOW Time of Week, in seconds from midnight Sunday UTC.

UTC Universal Time. Local solar mean time at Greenwich Meridian.

VDOP Vertical Dilution of Precision. See Dilution of Precision.

134

LIST OF REFERENCES

[BELL92] Bellingham, J.G., Consi, T.R., Tedrow, U., and DiMassa, D., "Hyperbolic
Acoustic Navigation for Underwater Vehicles: Implementation and
Demonstration", Proceedings of the 1992 Symposium on Autonomous
Underwater Vehicle Technology, IEEE Oceanic Engineering Society, June
2-3, 1992, Washington, D.C., pp. 304-309.

[BELL93-1] Bellingham, J.G., Bales, J.W., Atwood, D.K., Perrier, M., Goudey, C.A.,
Consi, T.R. and Chryssostomidis, C., "Performance Characteristics of the
Odyssey AUV", Proceedings of the 8th International Symposium on
Unmanned Untethered Submersible Technology, September 27-29, 1993,
pp. 37-49.

[BELL93-2] Bellingham, J.G., Deffenbaugh, M., Leonard, J.J., Catipovic, J. and
Schmidt, H., "Arctic Under-Ice Survey Operations", Proceedings of the 8 th
International Symposium on Unmanned Untethered Submersible
Technology, September 27-29, 1993, pp. 50-59.

[BERG93] Bergem, 0., "A Multibeam Sonar Based Positioning System for an AUV",
Proceedings of the 8 th International Symposium on Unmanned Untethered
Submersible Technology, September 27-29, 1993, pp. 291-299.

[BOSS85] Bossler, J. D. Rear Admiral, Challstrom, C. W., "Global Positioning
System Instrumentation and Federal Policy", Proceedings of the First
International Symposium on Precise Positioning with the Global
Positioning System, April 1985, pp. 1-9.

[BROW92-1I Brown, R.A., Cox, R.F., and Ebner, R.E., "Global Positioning Inertial
Navigation System Development", Proceedings of The Institute of
Navigation GPS-92, Albuquerque, NM, September 16-18, 1992, pp. 697-
705.

[BROW92-2] Brown, G.B., An Introduction to Random Signals and Applied Kalman
Filtering, pp. 437-441, John Wiley and Sons, Inc., New York, New York,
1992.

[BROW93] Brown, P., and Kirby-Smith, T., "Disposable GPS - Test Results of a Low
Cost Sensor for Sonobuoy Applications", Proceedings of The Institute of
Navigation GPS-93, Salt Lake City, UT, September 22-24, 1993, pp. 1417-
1424.

[BUTL93] Butler, B. and den Hertog, V., "Theseus: A Cable-Laying AUV",
Proceedings of the 8th International Symposium on Unmanned Untethered
Submersible Technology, September 27-29, 1993, pp. 1-6.

135

[BYRN93] Byrnes, R.B., Nelson, M.L., McGhee, R.B., Kwak, S.H., and Healey, A.J.,
"Rational Behavior Model: An Implemented Tri-Level Multilingual
Software Architecture for Control of Autonomous Underwater Vehicles",
Proceedings of the Eight International Symposium on Unmanned
Untethered Submersible Technology, September 27-29, 1993, Durham,
NH, pp. 160-178.

[CLYN92] Clynch, J.R., Thurmond, G., Rosenfeld, L., and Schramm, R., "Error
Characteristics of GPS Differential Positions and Velocities", Proceedings
of The Institute of Navigation GPS-92, Albuquerque, NM, September 16 -
18, 1992, pp. 969.

[CLYN92-2] Clynch, J.R., "George 4.3 Documentation", Naval Postgraduate School,
Monterey, CA, unpublished software input/output handler, July 1992.

[COAT93] Coates, R., and Wang, L., "The "WISP" Within-Structure Positioning
System", Proceedings of the 8 th International Symposium on Unmanned
Untethered Submersible Technology, September 27-29, 1993, pp. 231-238.

[COCO90] Coco, D.S., Coker, C., and Clynch, J.R., "Mitigation of Ionospheric Effects
for Single Frequency GPS Users", Proceedings of The Institute of
Navigation GPS-90, Colorado Springs, CO, September 19-21, 1990, pp.
169-174.

[COX941 Cox, R. and Wei, S., "Advances in the State of the Art for AUV Inertial
Sensors and Navigation Systems", Proceedings of the 1994 Symposium on
Autonomous Underwater Vehicle Technology, July 19 - 20, 1994,
Cambridge, MA, pp. 360-369.

[CRIS93] Cristi, R., "Sensor Based Navigation of an Autonomous Underwater
Vehicle", Proceedings of the 8 th International Symposium on Unmanned
Untethered Submersible Technology, September 27-29, 1993, pp. 300-310.

[CZES93] Czeschin, M.E., Hyslop, G.L., Schieber, G.E., Schwartz, M.K.,
"Automated Mission Planning for the Standoff Land Attack Missile
(SLAM)", Proceedings of the Precision Strike Technology Symposium,
October 26-28, 1993, pp. 147-155.

[DAVI93] Davidson, S.L., An Experimental Comparison of CLOS and C++
Implementations of an Object-Oriented Graphical Simulation of Walking
Robot Kinematics, M.S. Thesis, Naval Postgraduate School, Monterey,
CA, March, 1993.

[ESP93-1] E.S.P. 8680 Users Manual, Dovatron International, Longmont, CO,
February, 1993.E.S.P. 8680 Users Manual, Dovatron International,
Longmont, CO, February, 1993.

136

[ESP93-2] E.S.P. Analog to Digital Module Users Manual, Dovatron International,
Longmont, CO, February, 1993.

[ESP93-3] E.S.P. Flash Disk Module Users Manual, Dovatron International,
Longmont, CO, February, 1993.

[FU87] Fu, K.S., Gonzalez, R.C., and Lee, C.S.G., Robotics: Control, Sensing,
Vision, and Intelligence, McGraw-Hill, Inc., New York, 1987.

[GROS92] Grose, B.L., "The Application of the Correlation Sonar to Autonomous
Underwater Vehicle Navigation", Proceedings of the 1992 Symposium on
Autonomous Underwater Vehicle Technology, IEEE Oceanic Engineering
Society, June 2-3, 1992, Washington, D.C., pp. 298-303.

[GYRO921 Gyrochip Angular Rate Sensor Specifications, Systron Donner Inertial
Division, A BEI Electronics Co., Concord, CA, July, 1992.

[HADD93] Haddrell, A., and Meldrum, D., "A GPS Positioning System for an
Automatic Submersible Research Vessel", Proceedings of The Institute of
Navigation GPS-93, Salt Lake City, UT, September 22-24, 1993, pp. 701-
709.

[HEAL92] Healey, A.J., McGhee, R.B., Cristi, R., Papoulias, EA., Kwak, S.H.,
Kanayama, Y., Lee, Y., Shukla, S., Zaky, A., "Research on Autonomous
Underwater Vehicles at the Naval Postgraduate School", Naval Research
Review, Vol One, pp. 43-51.

[HEAL94] Healey, A.J., Marco, D.B., McGhee, R.B., Brutzman, D.P., Cristi, R.,
Papoulias, EA., and Kwak, S.H., "Tactical/Execution Level Coordination
for Hover Control of the NPS AUV II using Onboard Sonar Servoing",
Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle
Technology, July 19 - 20, 1994, Cambridge, MA, pp. 129-138.

[HELL92] Hellard, M.J., "Magnetic Sensors for Unmanned Vehicles", Journal of
Unmanned Systems", Spring 1992, pp. 49-51.

[HINR76] Hinrichs, P.R., "Advanced Terrain Correlation Techniques", Record of the
1976 Position Location and Navigation Symposium, IEEE Aerospace and
Electronic Systems Society, 1976.

[JORG94I Jorgensen, K.V., Grose, B.L., and Crandall, F.A., "Doppler Precision
Underwater Navigation", Sea Technology, Vol 35, No. 3, pp. 63-68.

[KOSC90] Koschmann, T.D., The Common Lisp Companion, John Wiley & Sons,
New York, 1990.

137

[KRAU93] Krause, Reinhardt, "New GPS Modules Target Handhelds", Electronic
News, Vol. 39, No. 1973, July 26, 1993, p. 4.

[KREM90] Kremer, G. T., Kalafus, R. M., Loomis, P. V. M., and Reynolds, J. C., "The
Effect of Selective Availability on Differential Global Positioning System
Corrections", NAVIGATION, Journal of The Institute of Navigation, Vol.
37 No. 1, Spring 1990.

[KVH91] "KVH C100 Multi-Purpose Digital Compass Sensor Preliminary Data
Sheet", KVH Industries, Inc., Middletown, RI, 1991.

[KWAK93] Kwak, S.H., Stevens, C.D., Clynch, J.R., McGhee, R.B., and Whalen,
R.H., "An Experimental Investigation of GPS/INS Integration for Small
AUV Navigation", Proceedings of the Eight International Symposium on
Unmanned Untethered Submersible Technology, September 27-29, 1993,
Durham, NH, pp. 239-251.

[LEU93] Leu, C.T., Chao, J.J., and Lee, T.S., "GPS Based Underwater Positioning -
A System Design", Proceedings of The Institute of Navigation GPS-93,
Salt Lake City, UT, September 22-24, 1993, pp. 745-754.

[LIGH93] Light, R.D., "Miniature AUVs for Scientific Applications", Sea
Technology, Vol. 34, No. 12, December 1993, pp. 10 -18 .

[MCGH92] McGhee, R.B., Clynch, J.R., Kwak, S.H., and McKeon, J.B., Technology
Survey and Preliminary Design for Small AUV Navigation System,
Technical Report, NPSCS-92-001, Naval Postgraduate School, Monterey,
CA, March, 1992.

[MCGH931 McGhee, R.B., "Finite Approximation of Climb Angle Using an
Accelerometer", unpublished notes, Naval Postgraduate School, March
1993.

[MCKE92] McKeon, J.B., Integration of GPS into a Small Underwater Navigation
System, M.S. Thesis, Naval Postgraduate School, Monterey, CA, March,
1992.

[MILL91] Miller, C., Application of Extended Kalman Filter to a Model-Based
Navigator for an AUV, Master's Thesis, Naval Postgraduate School,
Monterey, CA, December 1991.

[MOT093-1] Motorola GPS Receiver Technical Reference Manual, pp. 4-11, 22-27,
Motorola, October, 1993.

[MOTO93-2J Motorola GPS Evaluation Kit Quick Start Guide, pp. 2-1 - 4-17, A- I - A-
15, Motorola, June, 1993.

138

[MOYA93] Moya, D.C., and Elchynski, J.J., "Evaluation of the Worlds's Smallest
Integrated Embedded GPS/INS, the H-764G", The Institute of Navigation
Proceedings of 1993 National Technical Meeting, San Francisco, CA,
January 20-22, 1993, pp. 275-286.

[NAGE92] Nagengast, S., Correction of Inertial Measurements Using GPS Update for
Underwater Navigation, Master's Thesis, Naval Postgraduate School,
Monterey, CA, pp. 4-6, March 1992.

[OSSE93] Osse, J. and Light, R., "Line Deployment by a Miniature AUV Under
Arctic Ice", Proceedings of the 8 th International Symposium on Unmanned
Untethered Submersible Technology, September 27-29, 1993, pp. 277-290.

[PARK80] Parkinson, B.W., "Overview", Global Positioning System, Vol. 1, The
Institute of Navigation, Washington, D.C., 1980, pp. 1-2.

[PREC94] Precision Navigation, TCMI Electronic Compass Sensor Module, Data
Sheet, Mountain View, CA, June, 1994.

[PARK80] "PX176 Series Pressure Transducer Data Sheet, pp. 1-2, Omega
Technologies Limited, (no date).

[ROER93] Roer, M. and Jabert, J., "Proof of Concept: Research Using An
Autonomous Underwater Vehicle (AUV)", Proceedings of the 8 'h

International Symposium on Unmanned Untethered Submersible
Technology, September 27-29, 1993, pp. 252-264.

[SOUE92] Souen, K., and Nishida, T., "The World's Smallest 8-Channel GPS
Receiver", Proceedings of The Institute of Navigation GPS-92,
Albuquerque, NM, September 16-18, 1992, pp. 707-713.

[STEV93] Stevens, C.D., A Software Architecture for a Small Autonomous
Underwater Vehicle Navigzion System, M.S. Thesis, Naval Postgraduate
School, Monterey, CA, June, 1993.

[TUOH93] Tuohy, S.T., Patrikalakis, N.M., Leonard, J.J., Bellingham, J.G., and
Chryssostomidis, C., "AUV Navigation Using Geophysical Maps with
Uncertainty", Proceedings of the 8 1h International Symposium on
Unmanned Untethered Submersible Technology, September 27-29, 1993,
pp. 265-276.

[VAND80] Van Dierendonck, A.J., Russell, S.S., Kopitzke, E.R., and Birnbaum,
M.,"The GPS Navigation Message", Global Positioning System, Vol. 1,
The Institute of Navigation, Washington, D.C., 1980, pp. 55-73.

139

[WOOD851 Wooden, W. H., "NAVSTAR Global Positioning System: 1985",
Proceedings of the First International Symposium on Precise Positioning
with the Global Positioning System, April 1985, pp. 23-32.

[YOUN91] Youngberg, J.W., "A Novel Method for Extending GPS to U nderwater
Applications", NAVIGATION, Journal of The Institute of Navigation, Vol.
38, No. 3, Fall 1991.

140

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr Robert McGhee, Code CS/Mz
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. James Clynch, Code OC/C1
Oceanography Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. Dr. Se-Hung Kwak, Code CS/Kw
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

7. Dr. Randy Brill
Naval Research and Development

TCCOSC RDTE DIV 511
53420 Craig Rd. Rm 200
San Diego, CA 92152-6267

8. Russ Whalen, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

141

9. ADM Pearson I
Commander, Mine Warfare Command
Naval Air Station Corpus Christi
Corpus Christi, TX 78419-5000

10. Guy Oliver I
University of California, Santa Cruz
233 Northrop Place
Santa Cruz, CA 95060

11. Dr. James Eagle, Code UW/Er I
Undersea Warfare Department
Naval Postgraduate School
Monterey, CA 93940-5000

12. Dr. Anthony J. Healey, Code ME/Hy I
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93940-5000

13. Donald Brutzman, Code OR/Br 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940-5000

14. LT Nancy A. Norton 2
1514 NE Beulah Drive
Roseburg, OR 97470

142

